• Title/Summary/Keyword: River reach

Search Result 345, Processing Time 0.025 seconds

River Terraces and Geomorphic Development of Subi Basin, Yeongyang (하안단구와 수비분지의 지형발달)

  • Son, Myoung Won
    • Journal of The Geomorphological Association of Korea
    • /
    • v.24 no.2
    • /
    • pp.15-25
    • /
    • 2017
  • Subi basin is located at the crestline of Taebaek mountains. This paper aims to elucidate the geomorphic development of Subi basin through the analysis of river terraces built in Wangpi-cheon and Banbyeon-cheon. Wangpi-cheon flows northeastward from Subi basin, and Banbyeon-cheon flows southward at the west of Subi basin. Absolute age of terrace is measured by means of OSL methodology, long profile of Wangpi-cheon is made up with 10m interval contour line, and the elevation above river bed of high terraces is measured at the end part of terrace. The results are as follow: Firstly, high river terraces of Subi basin, Wangpi-cheon and Banbyeon-cheon are formed about 40 kyr(MIS 3) being interstadial stage of last glacial period. Secondly, the elevation above river bed of high terraces of Wangpi-cheon and Banbyeon-cheon tends to increase toward upstream. It means that the uplift of Taebaek Mountains influences considerably the formation of their terraces. Thirdly, the elevation above river bed of high terraces at the reach from Seomchon to Suha-ri of Wangpi-cheon tends to decrease toward upstream. This section is captured from Banbyeon-cheon flowing in the opposite direction. River piracy has occurred from the time of formation of Suha-ri high terrace to the time of formation of Hantee wind gap. Finally, for fluvial system of Wangpi-cheon to establish dynamic equilibrium, topographic axis will move toward Banbyeon-cheon.

Variation of Bird Community after Implementation of Close-to-Nature River Improvement Techniques in the Yangiae Stream (양재천에서 자연형 하천공법적용에 의한 조류(鳥類)군집의 변화)

  • Kim, Jung-Soo;Chae, Jin-Hwak;Koo, Tae-Hoe
    • Korean Journal of Ecology and Environment
    • /
    • v.36 no.1 s.102
    • /
    • pp.74-82
    • /
    • 2003
  • This study was carried out to understand how the bird community would change in a stream ecosystem after implementation of close-to-nature river improvement techniques conducted on the Gwacheon, Seocho and Hakyeul reaches in the Yangiae Stream, 'Seoul. At the Gwacheon reach, the number of species and individuals tended to decline. However, at the Seocho reach, the number of species was increased while the number of individuals appeared to be not changed greatly. Especially, density of Dabbling Ducks were rapidly increased. At the Hakyeul reach was both the number of species and the number of individuals were increased. Density of Herons and Dabbling Ducks rose, while density of Wagtails was decreased suddenly. Except the Gwacheon reach, the survey areas were gradually improved in species richness and density after the construction of river improvement. We suggested that the naturally-formed meandering (channel) bar, restoration of riparian vegetation and artificial ponds were helpful for birds habitation, however bicycle path constructed in flood plain was negative.

A Modeling of the River Bed Variation due to Flood Wave (홍수파(洪水波)에 의한 하상변동(河床變動) 예측모형(豫測模型))

  • Park, Sang Deog;Lee, Won Hwan;Cho, Won Cheol
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.9 no.2
    • /
    • pp.73-82
    • /
    • 1989
  • When the flood occurs in the alluvial rivers, the rivers adjust to the flood by means of the mechanism of the river bed variations and its morphological changes to pass that safely, the numerical model was developed to simulate the process of the alluvial river bed variation due to flood wave and carried out by the flood routing for flood wave and the sediment routing for river bed variation. The flood wave, river bed variation, and bed material size distribution may be analysed and predicted by this model. The ability of this model to predict the process of river bed response was proved by the application to the reach from Paldang dam to Indogyo site. In view of the flood analysis considering the sediment process, the effects of river bed variation for the flood routing may be negligible because the river bed variation is smaller than the unsteady flow variation during the same period. By the application of this model, it is shown that, in occurring of sequential flood events, the variation of the river bed and bed material size distribution due to flood wave is more dependent on the first flood event than the latter flood events, and that the river bed variation in this reach of the downstream Han river is dependent on the degradation and the coarsening of bed materials.

  • PDF

Measurements of Vertical Profiles in Suspended-Load Concentration Using the ASM-IV (ASM-IV를 이용한 부유사농도 연직분포의 측정)

  • Lee, Jong-Seok;Myeng, Bong-Jae;Cha, Young-Kee
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.6 no.1 s.20
    • /
    • pp.83-95
    • /
    • 2006
  • This study aims to analysis of suspended-load concentration in related to those data by measuring vertical sediments distribution with rainfall using the ASM (Argus Surface Meter)- IV at the channel reach of a upstream and a downstream in small river. The watershed, small river basin where had taken for experimental study was selected, which is a drainage area lied at Walha in Yunkee-Gun, Chungnam Province. Measured data of suspended-load concentration consists of two groups with 2,145 data during 1hr 11min 30sec and 1,216 data during 40min 32sec for measuring time of 2 second in the study reaches at river, respectively. In order to analyze of the vertical concentration distribution, using the data sets are selected the measuring time 16 sets one of these data by random in the study reaches. As a results, the Rouse number of a measured and a calculated value show that a rang of $0.00129{\sim}0.02394$, averaged value of 0.01129 md, a rang of $0.00118{\sim}0.00822$, averaged value of 0.00436 in upstream reaches, and also a rang of $0.065115{\sim}0.065295$, averaged value of 0.06521, and a rang of $0.057315{\sim}0.059109$, averaged value of 0.05795 in downstream reaches, respectively. These difference show that measured Rouse number compared with downstream reach errors of less than in upstream reach, but between measured and calculated of the Rouse number compared with downstream reach errors of more than in upstream reach, respectively. It seems to will be included one of the occurrence errors of variable estimations when Rouse number of calculated value to be made computed by the fall velocity with a high temperature of water using equation of empirical kinematic viscosity was derived in this study.

Design of GIS based Korean Reach File Supporting Water Quality Modeling (수질모델링 지원을 위한 GIS 기반 한국형 Reach File 설계)

  • Kwon, Moon-Jin;Kim, Kye-Hyun;Lee, Chol-Young
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.1
    • /
    • pp.1-13
    • /
    • 2012
  • Various input data required for water quality modeling have considerable impacts on modeling results and relevant analysis due to the absence of data standardization and lack of data accuracy. With this in mind, this study mainly focused on the designing Korean Reach File for more effective water quality modeling through the supply of database composed with accurate hydraulic and hydrologic data. The Korean Reach File is the hydraulic database with the locational information of individual reaches, and each reach represents the stream reach of homogeneous hydraulic characteristics. In detail, it has reach code designating each stream reach, and topological information including catalog unit, segment, marker and index. It was also designed considering linkage of existing codes such as stream name and stream code. The devised reach code was implemented to Kyungan River at the City of Gwangju of Kyunggi Province and the results showed that the reach code could effectively support the input database integrating basic numerous data required for water quality modeling based on a criterion as well as easier linkage and utilization with existing database. In addition, more systematic water quality management was enabled through the linkage of existing data such as treatment facilities, pollutant data, and management institutes using the reach codes defined for each stream section. In the future, more efforts need to be made to adopt the reach code as the national standard data thereby enabling utilization of numerous relevant database through the assigning of reach code to individual stream reaches nationwide.

Numerical analysis of flow and bed change at a confluence of the Namhan River and the Seom River using a two-dimensional model (2차원 수치모형을 이용한 남한강과 섬강 합류부 구간의 흐름 및 하상변동 해석)

  • Park, Moonhyung;Kim, Hyung Suk;Baek, Chang Hyun
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.12
    • /
    • pp.1273-1284
    • /
    • 2018
  • The flow and bed change were analyzed using the CCHE2D model, which is a two-dimensional numerical model, at a confluence of the Namhan River and Seom River where deposition occurs predominantly after the "Four Major Rivers Restoration Project." The characteristic of the junction is that the tributary of Seom River joined into the curved channel of the main reach of the Namhan River. The CCHE2D model analyzes the non-equilibrium sediment transport, and the adaptation lengths for the bed load and suspended load are important variables in the model. At the target area, the adaptation length for the bed load showed the greatest influence on the river bed change. Numerical simulation results demonstrated that the discharge ratio ($Q_r$) change affected the flow and bed change in the Namhan River and Seom river junction. When $Q_r{\leq}2.5$, the flow velocity of the main reach increased before confluence, thereby reducing the flow separation zone and decreasing the deposition inside the junction. When $Q_r$>2.5, there was a high possibility that deposition would be increased, thereby forming sand bar. Numerical simulation showed that a fixed sand bar has been formed at the junction due to the change of discharge ratio, which occurred in 2013.

Monitoring of Indicator Microorganism Concentrations of River Sediment and Surface Water in the Geum River Basin (금강 수계 내 하천퇴적물 및 지표수의 지표미생물 농도분포)

  • Kim, Geonha
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.1
    • /
    • pp.125-132
    • /
    • 2010
  • Characterization of sediment quality is important for the proper management of surface water quality, yet sediment has not been monitored sufficiently. In this study, fecal indicator microorganism concentrations of sediments in the Geum River Basin were monitored. Sampling was carried out at one paddy field, one lakeshore and five monitoring stations in the lower reach of the Geum River Basin. Surface waters and sediments were sampled four times during rainy season. Total coliform concentrations of sediments were 12 times higher in average to those of surface waters while E. coli concentrations of sediments were six times higher. No correlation found between indicator microorganism concentration between surface waters and sediments.

River Pollution Control Using Hierarchical Optimization Technique (계층적 최적화 기법을 이용한 강의 수질오염 제어)

  • 김경연;감상규
    • Journal of Environmental Science International
    • /
    • v.4 no.1
    • /
    • pp.71-80
    • /
    • 1995
  • A discrete state space model for a multiple-reach river system is formulated using the dynamics of biochemical oxygen demand(BOD) and dissolved oxygen(DO). A hierarchical optimization technique, which is applicable to large-scale systems with time-delays in states, is also described to control stream quality in a river as an optimal manner based on the interaction prediction method. The steady state tracking error of the proposed method is determined analytically and a necessary and sufficient condition on which a constant target tracking problem has zero steady-state error is derived. Computer simulations for the river pollution model illustrate the algorithm.

  • PDF

Relation between Measured and Calculated Velocities in a Tidal River (감조하천에서 실측유속과 계산유속과의 관계식)

  • Namgung, Don;Lee, Jin Woo;Cho, Yong-Sik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.6B
    • /
    • pp.523-529
    • /
    • 2011
  • A tidal river is a river affected by tides causing the water level to rise and fall. In the river, the velocity induced by tides at a dry season can be a more dominant factor than that at a flood season in designing hydraulic structures. In this study, flow velocities and water levels were observed in the downstream of Han River at the dry season, and they are used for verification of numerically predicted results. The behaviors of flow were also analyzed by using UNET, a commercial model managing unsteady flows. To estimate the roughness coefficients of the tidal river reach near the Shingok submerged weir, a statistical method is employed. In the method, the discrepancy ratio between the measured and calculated water levels was implemented.

Unsteady Flow Analysis for the Design of Local Scour Protection by HEC-RAS(UNET) Model in the River Reach Affected by Tide (HEC-RAS 모형에 의한 감조하천구간 부정류 해석 및 세굴보호공 설계)

  • Namgung, Don;Cho, Doo-Chan;Yoon, Kwang-Seok
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2005.05b
    • /
    • pp.1138-1142
    • /
    • 2005
  • The tidal river is a river affected by tide, which causes the water level to rise and fall two times everyday periodically. The local velocity across the river could be very fast because of the cross-sectional characteristics of the river even though it's not a rainy season. Therefore extreme local scour could take place around hydraulic structures such as piers and caissons due to backward flow velocity. For the construction of pier foundation of Ilsan-bridge In the Han River, the field observations were performed to get the velocity and water level. The numerical analysis was performed by HEC-RAS(UNET). The relationship between measured maximum velocity and calculated mean velocity is achieved, which is used to estimate the velocity and water level as the construction is proceeding. Countermeasures for scour were designed with the results of the hydraulic analysis to avoid potential damage during construction work. According to the results of monitoring, the velocity increase after temporary road embankment was negligible, from which it is considered that the degradation of main channel compensated for the constriction of cross-section by embankment.

  • PDF