Browse > Article

Measurements of Vertical Profiles in Suspended-Load Concentration Using the ASM-IV  

Lee, Jong-Seok (한밭대학교 토목공학과)
Myeng, Bong-Jae (단국대학교 토목환경공학과)
Cha, Young-Kee (단국대학교 토목환경공학과)
Publication Information
Journal of the Korean Society of Hazard Mitigation / v.6, no.1, 2006 , pp. 83-95 More about this Journal
Abstract
This study aims to analysis of suspended-load concentration in related to those data by measuring vertical sediments distribution with rainfall using the ASM (Argus Surface Meter)- IV at the channel reach of a upstream and a downstream in small river. The watershed, small river basin where had taken for experimental study was selected, which is a drainage area lied at Walha in Yunkee-Gun, Chungnam Province. Measured data of suspended-load concentration consists of two groups with 2,145 data during 1hr 11min 30sec and 1,216 data during 40min 32sec for measuring time of 2 second in the study reaches at river, respectively. In order to analyze of the vertical concentration distribution, using the data sets are selected the measuring time 16 sets one of these data by random in the study reaches. As a results, the Rouse number of a measured and a calculated value show that a rang of $0.00129{\sim}0.02394$, averaged value of 0.01129 md, a rang of $0.00118{\sim}0.00822$, averaged value of 0.00436 in upstream reaches, and also a rang of $0.065115{\sim}0.065295$, averaged value of 0.06521, and a rang of $0.057315{\sim}0.059109$, averaged value of 0.05795 in downstream reaches, respectively. These difference show that measured Rouse number compared with downstream reach errors of less than in upstream reach, but between measured and calculated of the Rouse number compared with downstream reach errors of more than in upstream reach, respectively. It seems to will be included one of the occurrence errors of variable estimations when Rouse number of calculated value to be made computed by the fall velocity with a high temperature of water using equation of empirical kinematic viscosity was derived in this study.
Keywords
ASM(Argus Surface Meter)-IV; suspended-load concentration profiles; Rouse number equation of empirical kinematic viscosity; fall velocity;
Citations & Related Records
연도 인용수 순위
  • Reference
1 윤세의, 이종태, 정재욱 (1993). 소유역에서의 유출 및 유사량 산정모형. 대한토목학회 1993년도 학술 발표회 개요집 (II), pp 169-172
2 이종석 (2004) . 수리학 실험. 도서출판 새론
3 Julien, P.Y. (1995). Erosion and Sedimentation. Cambridge University Press
4 User's Manual (1993). HEC-6 Scour and Deposition in Rivers and Reservoirs Hydrologic Engineering Center, U.S. Army Corps of Engineers, Davis, Calif
5 Woo, H.S. Julien, P.Y., and Richardson, E.V.(1988). Suspension of Large Concentrations of Sands. J. Hydr. Engrg., ASCE Vol. 114, No.8, pp. 888-898   DOI   ScienceOn
6 Wright, S., and Parker, G. (2004). Flow resistance and Suspended Load in Sand-Bed Rivers Simplified Stractification Model. J. Hydr. Engrg., ASCE Vol. 130, No. 8, pp. 796-805   DOI   ScienceOn
7 Vanoni, V.A. (1977). Sedimentation Engineering, The Manual on Sedimentation of the Sedimentation Committee of the Hydraulics Division, ASCE.
8 박한기, 민병형 (2001). 수정 Rouse 식을 이용한 유사량 산정방법 개발. 대한토목학회 논문집, 제21권, 제4-B호, pp. 427-434
9 송부호 (2003). 충적하천의 수로구간에 따른 유사분 포 및 이송특성 분석, 석사학위논문, 한밭대학교
10 Jimenez, J.A., and Madson, O.S. (2003). A Simple Formula to estimate Settling Velocity of Natural Sediments. J. Waterw., Port, Coastal, Ocean Engrg., Vol. 129, No.2, pp. 70-78   DOI   ScienceOn
11 Argus Ltd. (2004). ASM-IV (Argus Surface Meter). Manual, Version 4.1, United Kingdom (Taekwang Electronics Corporation)
12 Graf, W.H. (1971). Hydraulics of Sediment Transport. McGraw-Hill, New York
13 Rouse, H. (1937). Modern Conceptions of he Mechanics of Fluid Turbulence. Trans. ASCE, Vol. 102, pp. 463-505
14 Wu, B.S., Molinas, A., and Pierre, Y.J. (2004). Bed-Material Load Computations for Nonuniform Sediments. J. Hydr. Engrg., ASCE, Vol. 130, No. 10, pp. 1002-1012   DOI   ScienceOn
15 유권규, 우효섭 (1990). 하천 유사량 공식들의 비교 평가. 대한토목학회 논문집, 제10권, 제4호, pp. 67-75
16 차영기, 이종석, 이대철 (1995). 하천의 만곡구간에 있어 유사이송과 흐름특성에 관한 실적 연구. 대한토목학회 논문집, 제15권, 제5호, pp. 1333-1341
17 Einstein, H.A. (1950). The Bed-Load Function for Sediment Transportation in Open Channel Flows. USDA Tech. Bull. No. 1026, U.S. Dept. of Agric., Washington, D.C.
18 Dietrich, W.E. (1982). Settling Velocity of Natural Particles. Water Resources Reaches, Vol. 18, No.6, pp. 1615-1626   DOI
19 Simons, D.B., and Fuat, S. (1992). Sediment Transport Technology. Water and Sediment Dynamic, Water Resources Publications
20 Yang, C.T. (1996). Sediment Transport. Theory and Practice, The McGraw-Hill Companies, Inc.
21 Wu, W., Wang, S.S.Y., and Jia, Y. (2000). Nonuniform Sediment Transport in Alluvial Rivers. J. Hydr. Engrg., Res., Vol. 38, No. 6, pp. 427-434
22 Aziz, N.M. (1996). Error Estimate in Einstein's Suspended Sediment Load Method. J. Hydr. Engrg., ASCE Vol. 122, No. 15, pp. 282-285   DOI
23 충청남도 (1998). 월하천 하천정비기본계획, 부록
24 이길성, 이남주 (1992). 유사량 산정 공식 비교 연구. 대한토목학회 1992년도 학술발표회 개요집(II), pp 121-124
25 이종석, 차영기, 김진규 (1996) 총유사량 산정을 위한 유사 농도식의 도출. 한국수자원학회지, 제29권, 제1호, pp. 181-190
26 Cheng, N.S. (1997). Simplified Settleing Velocity Formulas for Sediment Particle. J. Hydr. Engrg., ASCE, Vol. 123, No.2, pp. 149-1152   DOI   ScienceOn
27 Guo,Q.C., and Jin, Y.C. (1999). Modeling Sediment Transport Using Depth-Averaged and Moment Equations. J. Hydr. Engrg., ASCE Vol. 125, No. 12, pp. 1262-1269   DOI
28 손광익 (2001). 해외 토사유출량 산정공식의 국내 적용성 검토(I, II). 한국수자원학회 논문집, 제34 권, 제3호, pp. 199-216
29 임영수 (2003). 저수지의 상류역 특성에 따른 유사이송 기구 분석, 석사학위논문, 한밭대학교
30 Ahrens, J.P. (2000) The Fall-Velocity Equation. J. Waterw., Port, Coastal, Ocean Eng., Vol. 126, No.2, pp. 99-102   DOI   ScienceOn