• Title/Summary/Keyword: River Plan

Search Result 531, Processing Time 0.022 seconds

Analysis of Design Flood Change for the Small to Medium Size Rivers in Gyeonggi-do (경기도 중.소하천의 계획홍수량 변화 분석)

  • Park, Sun-Hee;Won, Jin-Young;Song, Ju-Il;Yoon, Sei-Eui
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.10 no.2
    • /
    • pp.143-149
    • /
    • 2010
  • The river master plan was established every 10 years in Korea. The basin characteristics of 62 small and medium size rivers of which master plans were recently established during the past three years in Gyeonggi-do were investigated, and design rainfalls and design floods in the past and the latest were compared and analyzed. It was predicted that basin data and flood estimating method changed design flood. The quantitative amount of design floods were analyzed for 6 basins like Gungunchen etc. As the results, the increasing factors of design flood were the application of critical duration time, temporal time of rainfall and the increase of CN value. The decreasing factors of design flood were the application of Huff's rainfall distribution instead of Mononobe one and the ARF. The application of critical duration time increased flood about 60% whereas the application of Huff's rainfall distribution method estimated less flood than Mononobe about 62%. Considering critical duration time and changing rainfall distribution were the most important factors of increasing or decreasing design flood. However, trends of flood variation were differently analyzed by factors in 6 basins because characteristics of topography, weather, hydrology and hydraulic were different, now that correlations were not found between factors and flood variation. Flood variation is evaluated by complex effects of factors so new flood recalculated by reasonable methods should be considered as design flood.

Planning of Extuary Reservoirs for the Development of Water Resources -A Comparative Study of Representation Cases of Korea and Japan- (유역이수의 고도화에 대응하는 하구담수호의 계획론 -한국.일본의 대표적 사례의 비교연구-)

  • 이희영
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.24 no.1
    • /
    • pp.44-52
    • /
    • 1982
  • Recently, estuary reserovoirs have been actively constructed in Korea and also in Japan there are a large number of estuary reservoirs constructed. But most of the estuary reservoirs are located at the downstream of a river where geographical condition is best for the construction of an enclosing dam. And an effective utilization of water from the estuary reservoir seems to be difficult even if estuary reservoirs are considered to be the water resources the most available for their watershed. Studies on estuary reservoirs so far have been mainly concentrated on the physical and engineering problems of the dam construction itself. The purpose of the present study is to review the estuary reservoir planning in connection with the water resources development and to study a basis of the planning. First, the levels of water use in Korea and Japan were compared with those of other countries in the world. And then, some representative reservoirs were selected to study the roles of a reservoir and water-using conditions in the watershed. Based on the study, a survey was given on the relation between a dam construction upstream and an estuary reservoir construction downstream of a river. Finally, a comprehensive examination was made of the bases of estuary reservoir planning. (1) The estuary reservoir planning is deeply related to the plan for water use develo- pment in the watershed. After the upstream water resources were fully developed up to the most, water reso- urces development by an estuary reservoir should be started. (2) If an estuary lake has a capacity big enough, it can store flood discharge of the watershed without any loss and become a basic facility that will bring about the maxi- mum use of water from the watershed. (3) Estuary reservoirs store water used in the upstream watershed, so recycling of water use is attained by the reservoir. Water in the estuary lake is difficult to be fresh water in its long run. Therefore, estuary reservoir should be located at a place where polluted water is purified and refused. All the planning should be based on the assumption that water in the estuary lake is not fresh but polluted after a long time. (4) The estuary lake can only supply water to the lower basin directly. But the upstream area is benefited from the estuary lake by exchange of irrigation water sources between the lower and the upper area. So a large-scale exchange plan between new and existing water resources is important. By constructing estuary reservoirs and the exchange of water sources between upper and lower areas, the reasonable maximum use of water from the whole watershed is at- tained. (5) The big problem coming from the water resources development by an enclosing estuary is salt water intrusion into the lake. To maintain the estuary lake salt-free, multi-purpose use of the lake should be avoided. It is necessary to take such fundamental measures as abolition of back flow operation of gate, and the closing of the fish port and the fish ladder. The results mentioned above were found in this study and these results of this study could be used for the adequate planning of estuary reservoirs in connection with the maximum water use of the watershed.

  • PDF

The development of water circulation model based on quasi-realtime hydrological data for drought monitoring (수문학적 가뭄 모니터링을 위한 실적자료 기반 물순환 모델 개발)

  • Kim, Jin-Young;Kim, Jin-Guk;Kim, Jang-Gyeng;Chun, Gun-il;Kang, Shin-uk;Lee, Jeong-Ju;Nam, Woo-Sung;Kwon, Hyun-Han
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.8
    • /
    • pp.569-582
    • /
    • 2020
  • Recently, Korea has faced a change in the pattern of water use due to urbanization, which has caused difficulties in understanding the rainfall-runoff process and optimizing the allocation of available water resources. In this perspective, spatially downscaled analysis of the water balance is required for the efficient operation of water resources in the National Water Management Plan and the River Basin Water Resource Management Plan. However, the existing water balance analysis does not fully consider water circulation and availability in the basin, thus, the obtained results provide limited information in terms of decision making. This study aims at developing a novel water circulation analysis model that is designed to support a quasi-real-time assessment of water availability along the river. The water circulation model proposed in this study improved the problems that appear in the existing water balance analysis. More importantly, the results showed a significant improvement over the existing model, especially in the low flow simulation. The proposed modeling framework is expected to provide primary information for more realistic hydrological drought monitoring and drought countermeasures by providing streamflow information in quasi-real-time through a more accurate natural flow estimation approach with highly complex network.

Development of GIS based Water Quality Simulation System for Han River and Kyeonggi Bay Area (한강과 경기만 지역 GIS 기반 통합수질모의 시스템 개발)

  • Lee, Chol-Young;Kim, Kye-Hyun
    • Journal of Korea Spatial Information System Society
    • /
    • v.10 no.4
    • /
    • pp.77-88
    • /
    • 2008
  • There has been growing demands to manage the water quality of west coastal region due to the large scale urbanization along the coastal zone, the possibility of application of TMDL(Total Maximum Daily Loadings) to Han river, and the natural disaster such as oil spill incident in Taean, Chungnam. However, no system has been developed for such purposes. In this background, the demand of GIS based effective water quality management has been increased to monitor water quality environment and propose best management alternatives for Han river and Kyeonggi bay. This study mainly focused on the development of integrated water quality management system for Han river bas in and its estuary are a connected to Kyeonggi bay to support integrated water quality management and its plan. Integration was made based on GIS by spatial linking between water quality attributes and location information. A GIS DB was built to estimate the amount of generated and discharged water pollutants according to TMDL technical guide and it included input data to use two different water quality models--W ASP7 for Han river and EFDC for coastal area--to forecast water quality and to suggest BMP(Best management Practices). The results of BOD, TN, and TP from WASP7 were used as the input to run EFDC. Based on the study results, some critical areas which have relatively higher pollutant loadings were identified, and it was also identified that the locations discharging water pollutant loadings to river and seasonal factor affected water quality. And the relationship of water quality between river and its estuary area was quantitatively verified. The results showed that GIS based integrated system could be used as a tool for estimating status-quo of water quality and proposing economically effective BMPs to mitigate water pollution. Further studies need to be made for improving system's capabilities such as adding decision making function as well as cost-benefit analysis, etc. Also, the concrete methodology for water quality management using the system need to be developed.

  • PDF

A Study on Water Quality Purification Function by Using Planting Concrete and Porous Concrete (다공성 콘크리트와 식생 콘크리트에 의한 수질정화기능에 관한 연구)

  • Ahn, Tae Woong;Choi, I Song;Oh, Jong Min
    • Journal of Environmental Impact Assessment
    • /
    • v.17 no.5
    • /
    • pp.271-278
    • /
    • 2008
  • The purpose of this research provides the basic solution about waterfront and promotes the inherent capability, that recoveries both the river and gives the river for water quality to improve plan. In this study, we compare and analysis the slope contact between filter media of the porous concrete and planting concrete. As a result, when appling the porous concrete, it can show the removal efficiency is SS 53%, BOD 39%, COD 20%, T-N 36% T-P 42% and appling planting concrete is SS 58%, BOD42%, COD 26%, T-N 45%, T-P 53%. Therefore, planting concrete is higher removal efficiency (SS 5%, BOD 3%, COD 6%, T-N 9%, T-P 10%) than porous concrete. The experimental results show that using purification filter media on planting concrete is better than on porous concrete, because it have the higher purification filter efficiency. The quality of water improves vegetarian concrete, that can expect the increase of the self-purification capacity and improve the spectacle for providing the waterside and planting of planting concrete. In addition, it can complete and apply the research if having enough time for experimentation and accurate study for mechanism by plant, we can use both planting concrete filter media and the existing dike. As a result, we can gain the better quality of the water of the city's rivers and good economic value, that is spread by all cities applicable technologies. So it can be expected using well for future.

Development of Drought Vulnerability Index Using Delphi Method Considering Climate Change and Trend Analysis in Nakdong River Basin (낙동강 유역의 기후변화를 고려한 경향성 분석과 Delphi 기법을 이용한 가뭄 취약성 지수 개발)

  • Yang, Jeong-Seok;Kim, Il-Hwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.6
    • /
    • pp.2245-2254
    • /
    • 2013
  • A vulnerability index was developed for drought by using trend analysis and Delphi method. Twelve indicators were selected based on three groups, i.e., hydrological, meteorological, and humanistic groups. Data were collected from Nakdong river watershed. Three trend tests, i.e., Mann-Kendall, Hotelling-Pabst, and Sen's trend tests, were performed for standardizing the indicators and Delphi method was used to estimate the weights for individual indicators. The drought vulnerability index was calculated for seven regions in the Nakdong watershed and Hapcheon turned out to be the most vulnerable region among the study regions. The drought vulnerability index developed in this study can be applied to other regions in Korea for establishing national water resources management plan.

Analyzing the Efficiency of LID Technique for Urban Non-point Source Management - Focused on City of Ulsan in Korea - (저영향개발기법 적용을 통한 비점오염원 저감 및 비용효율 분석에 관한 실증적 연구 - 울산광역시를 대상으로 -)

  • Lim, Yong-Kyun;Jung, Ju-Chul;Shin, Hyun-Suk;Ha, Gyoung-Jun
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.17 no.2
    • /
    • pp.1-14
    • /
    • 2014
  • The purpose of this study is to identify the efficiency of LID technologies for controlling non-point source pollution from urban areas. The recent technical responses to managing water resource and urban areas according to the influence of climate change is an important national policy, along with green growth. Through various reference studies reasonable ways to consider a wholistic plan on urban-eco-friendly river management, the Low Impact Development (LID) as the adequate river management method is being undertaken in foreign countries to technically apply to urban plans. However, the LID is at the initial stage in Korea, with no specific studies implemented. Thus, this study explored whether LID technologies can be efficient measures to control non-point source pollution on the cost side. Ulsan's Namgu and Bukgu have been chosen as case studies that illustrate the efficiency of the LID technologies. On investigation, if LID technologies are designed properly, the efficiency of them is expected to higher than that of sewage treatment plant.

Risk Model for the Safety Evaluation of Dam and Levee: II. Application (댐 및 하천제방에 대한 위험도 해석기법의 개발 : II. 적용 예)

  • Han, Geon-Yeon;Lee, Jong-Seok
    • Journal of Korea Water Resources Association
    • /
    • v.30 no.6
    • /
    • pp.691-698
    • /
    • 1997
  • The risk assessment model for dam and levee is applied to a river where two adjacent dams are located in the upstream of the watershed. "A" dam is proven to be safe with 200-year precipitation and unsafe with PMP condition, whereas "B" dam to be safe with 200-year precipitation and PMP condition. The computed risk considering the uncertainties of the runoff coefficient. initial water depth and relevant data of the dam and spillway turn out to be equivalent results in Monte-Carlo and AFOSM method. In levee risk model, this study addresses the uncertainty of water surface elevation by Manning's equation. Monte-Carlo simulation with the variations of Manning's roughness coefficient is calculated by assuming that it follows atriangular distribution. The model can be used for preparing flood risk maps, flood warning systems, and establishing nation's flood disaster protection plan.

  • PDF

Large-Scale Multi-Reservoirs System Analysis for Water Budget Evaluation (물수지 분석을 위한 대규모 저수지 시스템 해석)

  • Lee, Gwang-Man;Yi, Jae-Eung
    • Journal of Korea Water Resources Association
    • /
    • v.30 no.6
    • /
    • pp.629-639
    • /
    • 1997
  • Many reservoirs have been constructed and operated for utilizing and controlling water in main rivers of Korea since 1960's. New reservoirs are planned to satisfy increasing water demands according to the National Long-Term Water Resources Development Plan, that will make the entire water resources system more complex. That means reasonable approach is necessary to review many alternatives for future policy decision making of water resources management. As an attempting to simplify the water problem of the large-scale reservoirs system with more than 10 reservoirs, two stages approach such as simulation approach(HEC-5) is first applied to medium and small reservoirs and the results are used as inputs to final optimization approach (IDP) including large reservoirs is used in the water budget analysis of Han river water resources. In addition, existing multi-purpose reservoirs and planned reservoirs in Han river are formulated into one system and DPSA is applied to solve the basin-wide water resources assessment problem.

  • PDF

Estimation of optimal ecological flowrates for fish habitats in a nature-like fishway of a large river

  • Kim, Jeong-Hui;Yoon, Ju-Duk;Baek, Seung-Ho;Jang, Min-Ho
    • Journal of Ecology and Environment
    • /
    • v.39 no.1
    • /
    • pp.43-49
    • /
    • 2016
  • Fishways are constructed to provide longitudinal connectivity of streams or rivers where their flow has been altered by in-stream structures such as dams or weirs. Nature-like fishways have an additional function of providing fish habitats. In the study, we estimated the role of a nature-like fishway (length: 700 m, slope: 1/100) for fish habitat by using two dominant species in the Sangju Weir, Nakdong River, to calculate the optimal ecological flow rate using Physical HABitat SIMulation (PHABSIM). To identify the dominant species that used the fishway, we conducted trap monitoring from August to November 2012 at the fishway exit. The dominant species were Zacco platypus and Opsariichthys uncirostric amurensis with a relative abundance of 62.1% and 35.9%, respectively. Optimal habitat suitability indices (HSIs) for Z. platypus and O. u. amurensis were calculated as 0.6-0.8 m/s (water velocity) and 0.2-0.4 m (water depth), and 0.5-0.7 m/s (water velocity) and 0.1-0.3 m (water depth), respectively. The optimal ecological flow rates (OEFs) for Z. platypus and O. u. amurensis were 1.6 and 1.7 cubic meter per second (CMS), respectively. The results of the study can be used in a management plan to increase the habitat function of nature-like fishways in the Sangju Weir. This methodology can be utilized as an appropriate tool that can determine the habitat function of all nature-like fishways.