• Title/Summary/Keyword: Ritz Method

Search Result 329, Processing Time 0.027 seconds

Optimal locations of point supports in laminated rectangular plates for maximum fundamental frequency

  • Wang, C.M.;Xiang, Y.;Kitipornchai, S.
    • Structural Engineering and Mechanics
    • /
    • v.5 no.6
    • /
    • pp.691-703
    • /
    • 1997
  • This paper investigates the optimal locations of internal point supports in a symmetric crossply laminated rectangular plate for maximum fundamental frequency of vibration. The method used for solving this optimization problem involves the Rayleigh-Ritz method for the vibration analysis and the simplex method of Nelder and Mead for the iterative search of the optimum support locations. Being a continuum method, the Rayleigh-Ritz method allows easy handling of the changing point support locations during the optimization search. Rectangular plates of various boundary conditions, aspect ratios, composed of different numbers of layers, and with one, two and three internal point supports are analysed. The interesting results on the optimal locations of the point supports showed that (a) there are multiple solutions; (b) the locations are dependent on both the plate aspect ratios and the number of layers (c) the fundamental frequency may be raised significantly with appropriate positioning of the point supports.

Ritz Analysis of Rectangular MEMS Structures (I);Formulation and Its Implementation (직사각형 MEMS 판 구조의 리츠 해석 (I);수식화 및 수치해법)

  • Kim, Eun-Seok;Lee, Byeong-Chae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.2 s.173
    • /
    • pp.421-430
    • /
    • 2000
  • We apply the Rayleigh Ritz method to analyze multi-layered plates with residual stresses. The method is very simple, straight forward, and easily programmable, but it should be applied to structure s only in simple shapes. We derive coupled variational equations based on the principle of virtual displacement, and investigate what kind of basis functions is desirable for the analysis of rectangular plates with various boundary conditions. We demonstrate the effectiveness and usefulness of the method through several examples. The analysis results obtained with the method are in good agreement with those available in literature. A multi-layered MEMS plate example shows that the coupling effect should not be ignored and that residual stresses do influence the stiffness of the structure very much.

Natural Vibrations of Rectangular Stiffened Plates with Inner Cutouts (유공 직사각형 보강판의 진동해석)

  • K.C.,Kim;S.Y.,Han;J.H.,Jung
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.24 no.3
    • /
    • pp.35-42
    • /
    • 1987
  • For the analysis of natural vibrations of a rectangular stiffened plate with inner cutouts, an application of the Rayleigh-Ritz method is investigated. In construction of the trial function for the Rayleigh quotient, only the outer boundary conditions are satisfied with combination of Euler beam functions. As to the modeling of stiffened plates for the energy calculations, a lumping stiffener-effects method and the orthotropic plate analogy are considered for the purpose of comparison. Some numerical results obtained by the Rayleigh-Ritz method are compared with results by experiments and the finite element method. The following are major conclusions; (1) With the lumping stiffener-effects modeling the Rayleigh-Ritz method gives good results of both natural frequencies and mode shapes. The orthotropic plate analogy in cases of regularly stiffened plates is of restrictive use i.e. acceptable for a small cutout. (2) The natural frequency of a stiffened plate with inner cutouts between stiffeners is higher than that of without cutouts and increase as the hole area ratio increases as long as there are no discontinuous stiffeners due to the cutout.

  • PDF

Natural Vibration Analysis of Two Circular Plates Coupled with Bounded Fluid (갇힌 유체로 연성된 두 원판의 고유진동 해석)

  • 정명조;정경훈
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.11 no.9
    • /
    • pp.439-453
    • /
    • 2001
  • This study deals with the free vibration of two identical circular plates coupled with a bounded fluid. An analytical method based on the finite Fourier-Bessel series expansion and Rayleigh-Ritz method is suggested. In the theory, it is assumed that the ideal fluid in a rigid cylindrical container and the two plates are clamped along the plate edges. The proposed method is verified by the finite element analysis using commercial program with a good accuracy. Two transverse vibration modes, namely in-phase and out-of-phase, are observed alternately in the fluid-coupled system when the number of nodal circles increases for the fixed nodal diameter. The effect of gap between the plates on the fluid-coupled natural frequencies sis also investigated.

  • PDF

Condensation of independent variables in free vibration analysis of curved beams

  • Mochida, Yusuke;Ilanko, Sinniah
    • Advances in aircraft and spacecraft science
    • /
    • v.3 no.1
    • /
    • pp.45-59
    • /
    • 2016
  • In this paper, the condensation method which is based on the Rayleigh-Ritz method, is described for the free vibration analysis of axially loaded slightly curved beams subject to partial axial restraints. If the longitudinal inertia is neglected, some of the Rayleigh-Ritz minimization equations are independent of the frequency. These equations can be used to formulate a relationship between the weighting coefficients associated with the lateral and longitudinal displacements, which leads to "connection coefficient matrix". Once this matrix is formed, it is then substituted into the remaining Rayleigh-Ritz equations to obtain an eigenvalue equation with a reduced matrix size. This method has been applied to simply supported and partially clamped beams with three different shapes of imperfection. The results indicate that for small imperfections resembling the fundamental vibration mode, the sum of the square of the fundamental natural and a non-dimensional axial load ratio normalized with respect to the fundamental critical load is approximately proportional to the square of the central displacement.

Moving-load dynamic analysis of AFG beams under thermal effect

  • Akbas, S.D.
    • Steel and Composite Structures
    • /
    • v.42 no.5
    • /
    • pp.649-655
    • /
    • 2022
  • In presented paper, moving load problem of simply supported axially functionally graded (AFG) beam is investigated under temperature rising based on the first shear beam theory. The material properties of beam vary along the axial direction. Material properties of the beam are considered as temperature-dependent. The governing equations of problem are derived by using the Lagrange procedure. In the solution of the problem the Ritz method is used and algebraic polynomials are used with the trivial functions for the Ritz method. In the solution of the moving load problem, the Newmark average acceleration method is used in the time history. In the numerical examples, the effects of material graduation, temperature rising and velocity of moving load on the dynamic responses ofAFG beam are presented and discussed.

The Influence of Corner Stress Singularities on the Vibration of Rhombic Plates Having Various Edge Conditions (다양한 연단조건을 갖는 마름모꼴형 평판의 진동에 대한 모서리 응력특이도의 영향)

  • Kim, Joo-Woo;Cheong, Myung-Chae
    • Journal of Korean Society of Steel Construction
    • /
    • v.12 no.4 s.47
    • /
    • pp.363-374
    • /
    • 2000
  • An accurate method is presented for vibrations of rhombic plates having three different combinations of clamped, simply supported, and free edge conditions. A specific feature here is that the analysis explicitly considers the moment singularities that occur in the two opposite corners having obtuse angles of the rhombic plates. Stationary conditions of single-field Lagrangian functional are derived using the Ritz method. Convergence studies of frequencies show that the corner functions accelerate the convergence rate of solutions. In this paper, accurate frequencies and normalized contours of the vibratory transverse displacement are presented for highly skewed rhombic plates, so that a significant effect of corner stress singularities nay be understood.

  • PDF

Numerical study on thin plates under the combined action of shear and tensile stresses

  • Sathiyaseelan, S.;Baskar, K.
    • Structural Engineering and Mechanics
    • /
    • v.42 no.6
    • /
    • pp.867-882
    • /
    • 2012
  • Analytical (Rayleigh-Ritz method) and numerical studies are carried out and buckling interaction curves are developed for simply supported plates of varying aspect ratios ranging from 1 to 5, under the combined action of in-plane shear and tension. A multi-step buckling procedure is employed in the Finite Element (FE) model instead of a regular single step analysis in view of obtaining the buckling load under the combined forces. Both the analytical (classical) and FE studies confirm the delayed shear buckling characteristics of thin plate under the combined action of shear and tension. The interaction curves are found to be linear and are found to vary with plate aspect ratio. The interaction curve developed using Rayleigh-Ritz method is found to deviate in an increasing trend from that of validated FE model as plate aspect ratio is increased beyond value of 1. It is found that the observed deviation is due to the insufficient number of terms that is been considered in the assumed deflection function of Rayleigh-Ritz method and a convergence study is suggested as a solution.

Free Vibration Analysis of Fluid Vessel with Annular and Circular Plates (환형평판과 원판으로 구성된 유체용기의 고유진동 해석)

  • Jeong, Kyeong-Hoon;Kim, Jong-In;Park, Keun-Bae
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.295-300
    • /
    • 2005
  • An analytical method for the hydroelastic vibration of a vessel composed of an upper annular plate and a lower circular plate is developed by the Rayleigh-Ritz method. The two plates are clamped along a rigid cylindrical vessel wall. It is assumed that the fluid bounded by a rigid cylindrical vessel is incompressible and non-viscous. The wet mode shape of the plates is assumed as a combination of the dry mode shapes of the plates. The fluid motion is described by using the fluid displacement potential and determined by using the compatibility conditions along the fluid interface with the plate. Minimizing the Rayleigh quotient based on the energy conservation gives an eigenvalue problem. It is found that the theoretical results can predict well the fluid-coupled natural frequencies comparing with the finite element analysis result.

  • PDF

Free Vibration Analysis of Fluid Vessel with Annular and Circular Plates (환형평판과 원판으로 구성된 유체용기의 고유진동 해석)

  • Jeong, Kyeong-Hoon;Kim, Jong-In;Park, Jin-Seok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.8 s.101
    • /
    • pp.968-974
    • /
    • 2005
  • An analytical method for the hydroelastic vibration of a vessel composed of an upper annular plate and a lower circular plate is developed by the Rayleigh-Ritz method. The two plates are clamped along a rigid cylindrical vessel wall. It is assumed that the fluid bounded by a rigid cylindrical vessel is incompressible and non-viscous. The wet mode shape of the plates is assumed as a combination of the dry mode shapes of the plates. The fluid motion is described by using the fluid displacement potential and determined by using the compatibility conditions along the fluid interface with the plate. Minimizing the Rayleigh quotient based on the energy conservation gives an eigenvalue problem. It is found that the theoretical results can predict well the fluid-coupled natural frequencies comparing with the finite element analysis result.