• 제목/요약/키워드: Ritz Method

검색결과 332건 처리시간 0.022초

모서리 응력특이도의 영향을 포함한 고정 또는 자유 경계조건의 조합을 고려한 마름모꼴 평판의 휨 진동 해석 (Analysis of Flexural Vibration of Rhombic Plates with Combinations Clamped and Free Boundary Conditions Including the Effect of Corner Stress Singularities)

  • 한봉구
    • 한국지진공학회논문집
    • /
    • 제3권1호
    • /
    • pp.9-20
    • /
    • 1999
  • 본 논문에서는 고정 또는 자유 연단 조건의 모든 조합을 고려한 마름모꼴 평판의 휨 진동에 대한 엄밀한 해석방법을 제시한다. 본 논문의 주된 관점은 마름모꼴 평판 둔각 모서리의 경계조건이 고정 또는 자유일 때 휨응력의 특이도를 엄밀히 고려하여 해석하는 것이다. 고정 또는 자유인 모서리 응력 특이도의 중대한 영향력이 이해 될 수 있도록 충분히 큰 165。 둔각모서리를 갖는 마름모꼴 평판에 대하며 엄밀한 무차원 진동수와 수직 변동변위의 전형적인 등고선을 제시하였다.

  • PDF

Parametric resonance of composite skew plate under non-uniform in-plane loading

  • Kumar, Rajesh;Kumar, Abhinav;Panda, Sarat Kumar
    • Structural Engineering and Mechanics
    • /
    • 제55권2호
    • /
    • pp.435-459
    • /
    • 2015
  • Parametric resonance of shear deformable composite skew plates subjected to non-uniform (parabolic) and linearly varying periodic edge loading is studied for different boundary conditions. The skew plate structural model is based on higher order shear deformation theory (HSDT), which accurately predicts the numerical results for thick skew plate. The total energy functional is derived for the skew plates from total potential energy and kinetic energy of the plate. The strain energy which is the part of total potential energy contains membrane energy, bending energy, additional bending energy due to additional change in curvature and shear energy due to shear deformation, respectively. The total energy functional is solved using Rayleigh-Ritz method in conjunction with boundary characteristics orthonormal polynomials (BCOPs) functions. The orthonormal polynomials are generated for unit square domain using Gram-Schmidt orthogonalization process. Bolotin method is followed to obtain the boundaries of parametric resonance region with higher order approximation. These boundaries are traced by the periodic solution of Mathieu-Hill equations with period T and 2T. Effect of various parameters like skew angle, span-to-thickness ratio, aspect ratio, boundary conditions, static load factor on parametric resonance of skew plate have been investigated. The investigation also includes influence of different types of linearly varying loading and parabolically varying bi-axial loading.

Buckling analysis of steel plates in composite structures with novel shape function

  • Qin, Ying;Luo, Ke-Rong;Yan, Xin
    • Steel and Composite Structures
    • /
    • 제35권3호
    • /
    • pp.405-413
    • /
    • 2020
  • Current study on the buckling analysis of steel plate in composite structures normally focuses on applying finite element method to derive the buckling stress. However, it is time consuming, computationally complicated and tedious for general use in design by civil engineers. Therefore, in this study an analytical study is conducted to predict the buckling behavior of steel plates in composite structures. Hand calculation method was proposed based on energy principle. Novel buckling shapes with biquadratic functions along both loaded and unloaded direction were proposed to satisfy the boundary condition. Explicit solutions for predicting the critical local buckling stress of steel plate is obtained based on the Rayleigh-Ritz approach. The obtained results are compared with both experimental and numerical data. Good agreement has been achieved. Furthermore, the influences of key factors such as aspect ratio, width to thickness ratio, and elastic restraint stiffness on the local buckling performance are comprehensively discussed.

전단변형이론 및 미분구적법을 이용한 곡선보의 내평면 진동해석 (In-Plane Vibration Analysis of Curved Beams Considering Shear Deformation Using DQM)

  • 강기준;김병삼
    • 한국산학기술학회논문지
    • /
    • 제7권5호
    • /
    • pp.793-800
    • /
    • 2006
  • 곡선보(curved beam)의 회전관성(rotatory inertia) 및 전단변형(shear deformation)을 고려한 평면내(in-plane) 자유진동을 해석하는데 미분구적법(DQM)을 이용하여 고정-고정 경계조건(boundary conditions)과 다양한 굽힘각(opening angles)에 따른 진동수(frequencies)를 계산하였다. DQM의 결과는 엄밀해(exact solution) 또는 다른 수치해석(Rayleigh-Ritz, Galerkin 또는 FEM) 결과와 비교하였으며, DQM은 적은 요소(grid points)를 사용하여 정회한 해석결과를 보여주었다.

  • PDF

The elastic deflection and ultimate bearing capacity of cracked eccentric thin-walled columns

  • Zhou, L.;Huang, Y.
    • Structural Engineering and Mechanics
    • /
    • 제19권4호
    • /
    • pp.401-411
    • /
    • 2005
  • The influence of cracks on the elastic deflection and ultimate bearing capacity of eccentric thin-walled columns with both ends pinned was studied in this paper. First, a method was developed and applied to determine the elastic deflection of the eccentric thin-walled columns containing some model-I cracks. A trigonometric series solution of the elastic deflection equation was obtained by the Rayleigh-Ritz energy method. Compared with the solution presented in Okamura (1981), this solution meets the needs of compatibility of deformation and is useful for thin-walled columns. Second, a two-criteria approach to determine the stability factor ${\varphi}$ has been suggested and its analytical formula has been derived. Finally, as an example, box columns with a center through-wall crack were analyzed and calculated. The effects of cracks on both the maximum deflection and the stability coefficient ${\varphi}$ for various crack lengths or eccentricities were illustrated and discussed. The analytical and numerical results of tests on the columns show that the deflection increment caused by the cracks increases with increased crack length or eccentricity, and the critical transition crack length from yielding failure to fracture failure ${\xi}_c$ is found to decrease with an increase of the slenderness ratio or eccentricity.

Characteristic equation solution of nonuniform soil deposit: An energy-based mode perturbation method

  • Pan, Danguang;Lu, Wenyan;Chen, Qingjun;Lu, Pan
    • Geomechanics and Engineering
    • /
    • 제19권5호
    • /
    • pp.463-472
    • /
    • 2019
  • The mode perturbation method (MPM) is suitable and efficient for solving the eigenvalue problem of a nonuniform soil deposit whose property varies with depth. However, results of the MPM do not always converge to the exact solution, when the variation of soil deposit property is discontinuous. This discontinuity is typical because soil is usually made up of sedimentary layers of different geologic materials. Based on the energy integral of the variational principle, a new mode perturbation method, the energy-based mode perturbation method (EMPM), is proposed to address the convergence of the perturbation solution on the natural frequencies and the corresponding mode shapes and is able to find solution whether the soil properties are continuous or not. First, the variational principle is used to transform the variable coefficient differential equation into an equivalent energy integral equation. Then, the natural mode shapes of the uniform shear beam with same height and boundary conditions are used as Ritz function. The EMPM transforms the energy integral equation into a set of nonlinear algebraic equations which significantly simplifies the eigenvalue solution of the soil layer with variable properties. Finally, the accuracy and convergence of this new method are illustrated with two case study examples. Numerical results show that the EMPM is more accurate and convergent than the MPM. As for the mode shapes of the uniform shear beam included in the EMPM, the additional 8 modes of vibration are sufficient in engineering applications.

에너지방정식에 기초한 사장 케이블 기본진동수 추출 (Fundamental Frequency Extraction of Stay Cable based on Energy Equation)

  • 김현겸;황재웅;이명재
    • 대한토목학회논문집
    • /
    • 제28권1A호
    • /
    • pp.125-133
    • /
    • 2008
  • 사장교의 장대화로 주탑 및 보강형과 더불어 사장 케이블의 동적 안정화에 많은 노력이 요구된다. 사장 케이블에서 동적 불안정은 주로 대칭 1모드와 역대칭 1모드에서 발생되며 대칭 1모드는 역대칭 1모드와 다르게 새그의 영향이 명확하게 나타나므로 기본진동수는 팽팽한 스트링으로부터 얻은 것과 상이한 결과를 제공하게 된다. 이러한 현상에 관해 Irvine, Triantafyllou, 안상섭 등은 해석적 기법을 통해 동적거동 분석을 수행하였다. 이들의 연구는 광범위한 영역의 Irvine Parameter에 대해 중요한 결과를 제시하였으나 특성점(Cross-Over Point 혹은 복합모드 형성점) 이후 영역에 대해서는 상이한 결과를 제시하였고 진동수방정식의 높은 비선형성으로 인해 해가 매우 민감한 난점이 있다. 본 연구는 사장 케이블 동적안정 문제에 주요한 모드들 중 새그의 영향이 가장 높은 대칭 1모드의 기본진동수에 초점을 맞추었으며 일반화된 역학적에너지에 경계조건을 만족시키는 진동형상을 적용하고 Rayleigh-Ritz 방법으로 해석적인 해를 제시하였다. 선행연구들과 다르게 본 연구는 선형적인 해를 제공하며 이에 따른 오차는 특성점 이내에서 3% 미만의 오차를 보였다. 또한, 사장 케이블이나 이에 준한 케이블은 특성점을 넘지 않으므로 공학적으로 충분한 가치를 갖는다고 볼 수 있다. 더불어 대칭 1모드에서 발생되는 갤로핑과 Parametric 공진대역을 분석하여 연구의 활용성을 확인하였다.

Fluid bounding effect on FG cylindrical shell using Hankel's functions of second kind

  • Khaled Mohamed Khedher;Shahzad Ali Chattah;Mohammad Amien Khadimallah;Ikram Ahmad;Muzamal Hussain;Rana Muhammad Akram Muntazir;Mohamed Abdelaziz Salem;Ghulam Murtaza;Faisal Al-Thobiani;Muhammad Naeem Mohsin;Abeera Talib;Abdelouahed Tounsi
    • Advances in nano research
    • /
    • 제16권6호
    • /
    • pp.565-577
    • /
    • 2024
  • Vibration investigation of fluid-filled functionally graded cylindrical shells with ring supports is studied here. Shell motion equations are framed first order shell theory due to Sander. These equations are partial differential equations which are usually solved by approximate technique. Robust and efficient techniques are favored to get precise results. Employment of the Rayleigh-Ritz procedure gives birth to the shell frequency equation. Use of acoustic wave equation is done to incorporate the sound pressure produced in a fluid. Hankel's functions of second kind designate the fluid influence. Mathematically the integral form of the Langrange energy functional is converted into a set of three partial differential equations. A cylindrical shell is immersed in a fluid which is a non-viscous one. These shells are stiffened by rings in the tangential direction. For isotropic materials, the physical properties are same everywhere where the laminated and functionally graded materials, they vary from point to point. Here the shell material has been taken as functionally graded material. After these, ring supports are located at various positions along the axial direction round the shell circumferential direction. The influence of the ring supports is investigated at various positions. Effect of ring supports with empty and fluid-filled shell is presented using the Rayleigh - Ritz method with simply supported condition. The frequency behavior is investigated with empty and fluid-filled cylindrical shell with ring supports versus circumferential wave number and axial wave number. Also the variations have been plotted against the locations of ring supports for length-to-radius and height-to-radius ratio. Moreover, frequency pattern is found for the various position of ring supports for empty and fluid-filled cylindrical shell. The frequency first increases and gain maximum value in the midway of the shell length and then lowers down. It is found that due to inducting the fluid term frequency result down than that of empty cylinder. It is also exhibited that the effect of frequencies is investigated by varying the surfaces with stainless steel and nickel as a constituent material. To generate the fundamental natural frequencies and for better accuracy and effectiveness, the computer software MATLAB is used.

회전하는 금속복합재료 혼합적층 원통쉘의 진동해석 (Vibration Analysis of the Rotating Hybrid Cylindrical Shells Laminated with Metal and Composite)

  • 이영신;김영환
    • 대한기계학회논문집A
    • /
    • 제20권3호
    • /
    • pp.968-977
    • /
    • 1996
  • The linear/nonlinear vibration response of the rotating hybrid cylindrical shell with simply supported boundary condition is studied. The Ritz-Galerkin method is applied to obtain the nonlinear frequency equation, which excludes in-plane and rotatory inertia but includes bending stretching coupling terms. The bifurcation phenomena for the linear frequency and the frequency ratio(nonlinear/linear frequency ratio) are presented. The hybrid cylindrical shells are composed of composite(GFRP, CFRP) metal(aluminium, steel) with symmetric and antisymmetric stacking sequence. The effects of the Coriolis and centrifugal force are considered The results also present the effects of length-to- radies ratio, radius-to-thickness ratio, the circumferential wave number, the stacking sequence, the material property, the initial excitation amplitude and the rotating speed. The present linear frequency results are compared with those of the available literature.

MFC 작동기가 부착된 실린더 쉘 구조물의 동적 모델링과 능동진동제어기 설계 및 실험 (Dynamic Modeling, Active Vibration Controller Design and Experiments For Cylindrical Shell equipped with MFC Actuators)

  • 곽문규;정문산
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 추계학술대회논문집
    • /
    • pp.565-573
    • /
    • 2007
  • This paper is concerned with the dynamic modeling, active vibration controller design and experiments for a cylindrical shell equipped with MFC actuators. The dynamic model was derived by using Rayleigh-Ritz method based on Donnel-Mushtari shell theory. The actuator and sensors for the MFC actuator equations were derived based on pin-force model. The equations of motion were then reduced to modal equations of motion by considering the modes of interest. The sensor equations were also converted to a reduced form. An aluminum shell was fabricated to demonstrate the effectiveness of modeling and control techniques. The boundary conditions at both ends of the shell were assumed to be shear diaphragm. Theoretical natural frequencies were calculated and compared to experimental result. It was observed that the theoretical result is in good agreement with experimental result for the first two modes. The multi-input and multi-output positive position feedback controller, which can cope with first two modes, was then designed based on the blockinverse theory and implemented using DSP. It was found from experiment that vibrations can be successfully suppressed.

  • PDF