• Title/Summary/Keyword: Risk safety areas

Search Result 394, Processing Time 0.025 seconds

Implementation Method of GIS Map for 3D Liquefaction Risk Analysis (3차원 액상화 위험분석을 위한 GIS Map 구현 방안)

  • Lee, Woo-Sik;Jang, Yong Gu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.6
    • /
    • pp.10-17
    • /
    • 2020
  • Recently, the liquefaction phenomenon was first discovered in Korea due to a magnitude 5.4 earthquake that occurred in Pohang, Gyeonsangbuk-do. When liquefaction occurs, some of the water and sand are ejected to the ground, producing a space, which leads to various dangerous situations, such as ground subsidence, building collapse, and sinkhole generation. Recently, the necessity of producing a liquefaction risk map in Korea has increased to grasp potential liquefaction areas in advance. Therefore, this study examined the drilling information from the national geotechnical information DB center at the Ministry of Land, Infrastructure, and Transport to produce a liquefaction risk map, and developed a module to implement functions for basic data modeling and 3D analysis based on drilling information database extraction and information. Through this study, effective interlocking technology of the integrated database of national land information was obtained, and three-dimensional information was generated for each stage of liquefaction risk analysis, such as soil resistance value and a liquefaction risk map. In the future, the technology developed in this study can be used as a comprehensive decision support technology for establishing a foundation for building 3D liquefaction information and for establishing a response system of liquefaction.

Seismic collapse safety of high-rise RC moment frames supported on two ground levels

  • Wu, Yun-Tian;Zhou, Qing;Wang, Bin;Yang, Yeong-Bin;Lan, Tian-Qing
    • Earthquakes and Structures
    • /
    • v.14 no.4
    • /
    • pp.349-360
    • /
    • 2018
  • Reinforced concrete (RC) moment frames supported on two ground levels have been widely constructed in mountainous areas with medium to high seismicity in China. In order to investigate the seismic collapse behavior and risk, a scaled frame model was tested under constant axial load and reversed cyclic lateral load. Test results show that the failure can be induced by the development of story yielding at the first story above the upper ground. The strong column and weak beam mechanism can be well realized at stories below the upper ground. Numerical analysis model was developed and calibrated with the test results. Three pairs of six case study buildings considering various structural configurations were designed and analyzed, showing similar dynamic characteristics between frames on two ground levels and flat ground of each pair. Incremental dynamic analyses (IDA) were then conducted to obtain the seismic collapse fragility curves and collapse margin ratios of nine analysis cases designated based on the case study buildings, considering amplification of earthquake effect and strengthening measures. Analysis results indicate that the seismic collapse safety is mainly determined by the stories above the upper ground. The most probable collapse mechanism may be induced by the story yielding of the bottom story on the upper ground level. The use of tie beam and column strengthening can effectively enhance the seismic collapse safety of frames on two ground levels.

Hazard Evaluation of Levee by Two-Dimensional Hydraulic Analysis (2차원 수리해석에 의한 하천 제방 위험도 평가분석)

  • Park, Jun Hyung;Kim, Tae Hyung;Han, Kun Yeun
    • Journal of Wetlands Research
    • /
    • v.18 no.1
    • /
    • pp.45-57
    • /
    • 2016
  • Levee safety is being evaluated using one of the several failure causes including overtopping, infiltration and erosion or 1D hydraulic analysis considering physical characteristics of levee in practical engineering works. However, mentioned evaluation methods are not able to consider various failure causes of levee at the same time and to get reliable results where requires the accurate topographic information. This study proposed the flood hazard index which is able to consider several hazard factors involving overtopping, infiltration and erosion risk simultaneously. The index was generated from results of 2D hydraulic analysis reflecting accurate topographic information. The study areas are the confluences of the Nakdong River and two streams(Gamcheon and Hoecheon). Levee safety was evaluated using results based on 2D hydraulic analysis considering riverbed changes of before and after dredging work in the study area. This study will contribute to estimate the reliable safety evaluation of levee where may have hazards during extreme flood events.

Development of Multi-hazard Fragility Surface for Liquefaction of Levee Considering Earthquake Magnitude and Water Level (수위와 지진을 고려한 제방의 액상화에 대한 복합재해 취약도 곡면 작성)

  • Hwang, Ji-Min;Cho, Sung-Eun
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.6
    • /
    • pp.25-36
    • /
    • 2018
  • Soil liquefaction is one of the types of major seismic damage. Soil liquefaction is a phenomenon that can cause enormous human and economic damages, and it must be examined before designing geotechnical structures. In this study, we proposed a practical method of developing a multi-hazard fragility surface for liquefaction of levee considering earthquake magnitude and water level. Limit state for liquefaction of levee was defined by liquefaction potential index (LPI), which is frequently used to assess the liquefaction susceptibility of soils. In order to consider the uncertainty of soil properties, Monte Carlo Simulation based probabilistic analysis was performed. Based on the analysis results, a 3D fragility surface representing the probability of failure by soil liquefaction as a function of the ground motion and water level has been established. The prepared multi-hazard fragility surface can be used to evaluate the safety of levees against liquefaction and to assess the risk in earthquake and flood prone areas.

Design and Implementation of Gas Leakage Alarm IoT System for Safety Helmet (안전모 장착용 가스 누출 경보 IoT 시스템 설계 및 구현)

  • Ju, Yong-Min;Lee, Hyo-Seung;Oh, Jae-Chul
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.13 no.6
    • /
    • pp.1411-1416
    • /
    • 2018
  • Currently, most of the industrial areas like chemistry, manufacturing, shipbuilding, and steel, perform the work related to gas, and the staffs who are in charge of this work have a risk of suffocation without cognizing incidents like gas leak. For example, when the nitrogen gas leaked in 2015 at Paju, two people were killed and four people were injured. In 2018 at Pohang, four workers were suffocated to death from nitrogen gas. In order to solve this problem, this study realized the system in which workers could immediately cognize the gas leak and also deliver the situation to the staff in charge of safety at the same time, by installing the IoT device composed of gas sensor and communication module on the safety helmet that should be worn by field workers. This study is expected to be able to reduce the casualties caused by gas leak in industrial sites.

Ergonomic Evaluation of Young Agricultural Operators Using Handle Equipment Through Electromyography and Vibrations Analysis Between the Fingers

  • Federico Roggio;Ermanno Vitale;Veronica Filetti;Venerando Rapisarda;Giuseppe Musumeci;Elio Romano
    • Safety and Health at Work
    • /
    • v.13 no.4
    • /
    • pp.440-447
    • /
    • 2022
  • Background: Agricultural handle equipment is present on all production areas' farms. They are handy and portable; however, excessive use can lead to acute traumas or accidental injuries. Repetitive movements, awkward postures, and hand-arm vibrations predispose them to pain and work-related musculoskeletal disorders. The purpose of this study was to observe the interaction of handle equipment in terms of electromyographic activity and analyze the postural work-related alterations. Materials and methods: Twenty male agricultural operators, mean age 24±1.54 years, underwent the electromyographic analysis testing their muscular activities with a brushcutter, electric saw, and hedge trimmer in four different test conditions. Results: The brushcutter proved to be the agricultural handle equipment with the higher mean frequency (3.37±0.38 Hz) and root mean square (5.25±1.24 ms-2). Furthermore, the digital postural analysis showed a general asymmetry of the main arm and the respective side of the trunk. The head resulted right inclined in the anterior frontal plane by 5.7°±1.2°; the right scapula lower than the left in the posterior frontal plane (8.5°±1.8°), and a working trunk inclination of 34.15°±5.7°. Conclusions: Vibrations of handle equipment and awkward working postures represent a risk for agricultural operators. Preventive measures are required to avoid young operators from experiencing musculoskeletal disorders all lifelong.

The Burdens of Occupational Heat Exposure-related Symptoms and Contributing Factors Among Workers in Sugarcane Factories in Ethiopia: Heat Stress Wet Bulb Globe Temperature Meter

  • Mitiku B. Debela;Achenef M. Begosaw;Negussie Deyessa;Muluken Azage
    • Safety and Health at Work
    • /
    • v.14 no.3
    • /
    • pp.325-331
    • /
    • 2023
  • Background: Heat stress is a harmful physical hazard in many occupational settings. However, consequences of occupational heat exposure among workers in a sugarcane factory in Ethiopia are not well characterized. This study aimed to assess the level of occupational heat exposure-related symptoms and contributing factors. Methods: In this cross-sectional study, five workstations were selected for temperature measurement. Heat stress levels were measured using a wet-bulb globe temperature index meter. A stratified random sampling technique was used to select 1,524 participants. Heat-related symptoms were assessed using validated questionnaires. Results: The level of occupational heat exposure was 72.4% (95% CI: 70.2%-74.8%), while 71.6% (95% CI: 69.3%-74.9%) of participants experienced at least one symptom related to heat stress. The most common heat-related symptoms were swelling of hands and feet (78%), severe thirst (77.8%) and dry mouth (77.4%). The identified risk factors were a lack of reflective shields (AOR: 2.20, 95% CI: 1.53, 3.17), not-enclosed extreme heat sources (AOR: 1.76, 95% CI: 1.23, 2.51), a lack of access to shade (AOR: 9.62, 95% CI: 6.20, 14.92), and inappropriate protective clothing provision (AOR: 1.58, 95% CI: 1.27, 2.71). Conclusions: The burden of occupational heat exposure and heat-induced symptoms was high. Lack of reflective shields, the absence of enclosed extreme heat sources, a lack of access to shade, and inappropriate protective clothing provision were considerable attributes of heat stress. Therefore, the use of mechanical solutions to stop heat emissions at their sources and the key factors identified were areas for future intervention.

Role of Interventions in Preventing Unintentional Home Injuries of Older Adults in Korea: A Scoping Review (국내 노인의 가정 내 비의도적 손상예방을 위한 중재의 역할: 주제범위 문헌고찰)

  • Cho, Ok-Hee;Hwang, Kyung-Hye;Kim, Hyekyung
    • Journal of Home Health Care Nursing
    • /
    • v.31 no.1
    • /
    • pp.16-29
    • /
    • 2024
  • Purpose: This scoping review aimed to synthesize the characteristics and effects of interventions designed to prevent unintentional home injuries in older adults in Korea. Methods: The review was conducted following the Joanna Briggs Institute protocol. A literature search was performed for studies published between 2001 and 2022 in the DBPia, RISS, KMBase, and NDSL databases. A total of 1,620 studies were identified, and 27 studies were included in the final analysis. Data were analyzed for characteristics of the literature, intervention-related unintentional injury mechanisms, and safety areas. Results: Most selected studies utilized a quasi-experimental design and targeted elderly women. In terms of injury mechanisms, 21 of 27 studies focused on falls, 2 on fire/disaster, 3 on drugs, and 1 on food. The most common preventive intervention for falls was exercise, and its effectiveness was verified using physical safety variables. Interventions in the fire/disaster, drug, and food domains were all educational, and changes in knowledge, behavior, and attitude were verified. Conclusion: This study confirmed the effectiveness of interventions for preventing unintentional injuries in the homes of community-dwelling older adults. These findings can serve as a foundation for developing and implementing unintentional injury prevention interventions at home for community-dwelling older adults. Multidisciplinary research is needed to address multifaceted safety issues by considering the home environment and injury risk factors.

Analysis of Microbiological Contamination Levels of Cabbage and Fresh-cut Produce on Difference Area toward Climate in Korea (우리나라 기후대별 양배추 및 신선편이제품의 오염도 분석)

  • Choi, Na-Jung;Bahk, Gyung-Jin;Ha, Sang-Do;Chung, Myung-Sub;Lee, Soon-Ho;Hwang, In-Gyun;Park, Joong-Hyun;Kim, Gwang-Hee;Oh, Deog-Hwan
    • Journal of Food Hygiene and Safety
    • /
    • v.27 no.3
    • /
    • pp.209-214
    • /
    • 2012
  • The purpose of this study was to evaluate microbiological contamination of fresh-cut produce salads and raw cabbage toward climate change. Total aerobic bacteria, coliform and Escherichia coli were monitored to get the contamination levels and E. coli O157:H7, Staphylococcus aureus, Bacillus cereus, Listeria monocytogenes and Salmonella spp. to detect pathogens with risk of foodborne disease from samples. Collection of 360 samples (180 fresh-cut produce salads and 180 raw cabbage), including 60 samples from each area after setting 3 areas depending on annual temperature and annual rainfall. As a result, total aerobic bacteria and coliform group were different was performed areas in raw cabbage but there was no difference between areas in fresh-cut produce salads. In addition foodborne pathogens including E. coli were not isolated from fresh-cut produce salads.

A study on damage prediction analysis for styrene monomer fire explosion accidents (스티렌 모노머 화재폭발사고 피해예측 분석에 관한 연구)

  • Hyung-Su Choi;Min-Je Choi;Guy-Sun Cho
    • Industry Promotion Research
    • /
    • v.9 no.2
    • /
    • pp.37-44
    • /
    • 2024
  • This study selected the worst-case scenario for fireball and vapor cloud explosion (VCE) of a styrene monomer storage tank installed in a petrochemical production plant and performed damage prediction and accident impact analysis. The range of influence of radiant heat and overpressure due to fireball and vapor VCE during the abnormal polymerization reaction of styrene monomer, the main component of the mixed residue oil storage tank, was quantitatively analyzed by applying the e-CA accident damage prediction program. The damage impact areas of radiant heat and explosion overpressure are analyzed to have a maximum radius of 1,150m and 626m, respectively. People within 1,150m of radiant heat of 4kW/m2 may have their skin swell when exposed to it for 20 seconds. In buildings within 626m, where an explosion overpressure of 21kPa is applied, steel structures may be damaged and separated from the foundation, and people may suffer physical injuries. In the event of a fire, explosion or leak, determine the risk standards such as the degree of risk and acceptability to workers in the work place, nearby residents, or surrounding facilities due to radiant heat or overpressure, identify the hazards and risks of the materials handled, and establish an emergency response system. It is expected that it will be helpful in establishing measures to minimize damage to workplaces through improvement and investment activities.