• 제목/요약/키워드: Risk period of damage

검색결과 125건 처리시간 0.02초

농작물의 기상재해 발생위험 판정기준 설정 및 지구 온난화에 따른 기준기상위험의 변화 전망 (An Agrometeorological Reference Index for Projecting Weather-Related Crop Risk under Climate Change Scenario)

  • 김대준;김진희;윤진일
    • 한국농림기상학회지
    • /
    • 제18권3호
    • /
    • pp.162-169
    • /
    • 2016
  • 기준기상위험이란 한 지역의 평년기후조건이 작물재배에 미칠 수 있는 '농업기상학적 피해가능성'으로서, 동일 작물 재배 시 지역에 따른 재해위험을 비교하는 기준이 된다. 지구온난화로 인하여 겨울 온도는 상승할 것으로 예상되지만, 기상이변의 빈도 또한 늘어날 것으로 전망되기 때문에 미래 기후조건에서 과수의 동해, 상해 등 저온에 의한 재해위험이 주목 받고 있다. 그러나 기후의 변화는 과수 생물계절도 변화시키므로 기상조건에 근거한 단순한 재해위험 전망은 기후변화적응의 실용측면에서 별 도움이 되지 못한다. 본 연구에서는 전국 주요 지역의 과거 및 기후변화시나리오를 이용하여 배, 복숭아, 사과의 생물계절을 예측하고 생육단계별 기온과의 상호작용에 근거하여 저온 유래 기준기상위험을 계산함으로써 미래의 재해가능성을 전망하였다. 휴면해제일은 미래로 갈수록 늦어질 것으로 전망되었으며, 발아일과 개화일의 경우 빨라질 것으로 예상되었다. 대구, 전주, 목포의 경우 휴면해제일의 지연 정도가 미래로 갈수록 커졌으며 발아일과 개화일의 경우 서울, 인천 지역이 다른 지역에 비해 늦게 나타났다. 서울과 인천, 대구와 전주, 부산과 목포가 서로 비슷한 양상을 나타내었다. 휴면기 동안에는 전 지역이 동해에 안전하였으나 휴면해제-발아기 동안에는 전 지역이 동해에 취약하였고, 발아기-개화기의 위험은 미래로 갈수록 대체로 낮아졌지만 지역에 따라 위험이 커지는 곳도 있었다.

Probabilistic earthquake risk consideration of existing precast industrial buildings through loss curves

  • Ali Yesilyurt;Seyhan O. Akcan;Oguzhan Cetindemir;A. Can Zulfikar
    • Geomechanics and Engineering
    • /
    • 제37권6호
    • /
    • pp.565-576
    • /
    • 2024
  • In this study, the earthquake risk assessment of single-story RC precast buildings in Turkey was carried out using loss curves. In this regard, Kocaeli, a seismically active city in the Marmara region, and this building class, which is preferred intensively, were considered. Quality and period parameters were defined based on structural and geometric properties. Depending on these parameters, nine main sub-classes were defined to represent the building stock in the region. First, considering the mean fragility curves and four different central damage ratio models, vulnerability curves for each sub-class were computed as a function of spectral acceleration. Then, probabilistic seismic hazard analyses were performed for stiff and soft soil conditions for different earthquake probabilities of exceedance in 50 years. In the last step, 90 loss curves were derived based on vulnerability and hazard results. Within the scope of the study, the comparative parametric evaluations for three different earthquake intensity levels showed that the structural damage ratio values for nine sub-classes changed significantly. In addition, the quality parameter was found to be more effective on a structure's damage state than the period parameter. It is evident that since loss curves allow direct loss ratio calculation for any hazard level without needing seismic hazard and damage analysis, they are considered essential tools in rapid earthquake risk estimation and mitigation initiatives.

기간별 한계강우량 산정을 통한 변화 특성 분석 (Analysis of change characteristics through estimating the limit rainfall by period)

  • 황정근;조재웅;강호선;이한승;문혜진
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2020년도 학술발표회
    • /
    • pp.99-99
    • /
    • 2020
  • The frequency and scale of domestic flood damage continues to increase, but the criteria for responding to flood damage have not been established. To this end, research is underway to estimate the amount of rainfall in each region so that it can be used to respond to flood damage. The limit rainfall is defined as the cumulative maximum rainfall for each duration that causes flooding, and this research purpose to improve the threshold rainfall by estimating the damage based on the damage history in units of 5 years and analyzing changes over time. The limit rainfall based on the damage history was estimated by using the NDMS past damage history of the Ministry of the Interior and Safety and the rainfall minutes data of AWS and ASOS. The period for estimating the limit rainfall is 2013 ~ 2017, 2015 ~ 2019, and the limit rainfall is estimated by analyzing the relationship between the flood damage history and the rainfall event in each period. Considering changes in watershed characteristics and disaster prevention performance, the data were compared using 5-year data. As a result of the analysis, the limit rainfall based on the damage history could be estimated for less than about 10.0% of the administrative dongs nationwide. As a result of comparing the limit rainfall by period, it was confirmed that the area where the limit rainfall has increased or decreased This was analyzed as a change due to rainfall events or urbanization, and it is judged that it will be possible to improve the risk criteria of flooding.

  • PDF

Time-dependent seismic risk analysis of high-speed railway bridges considering material durability effects

  • Yan Liang;Ying-Ying Wei;Ming-Na Tong;Yu-Kun Cui
    • Earthquakes and Structures
    • /
    • 제24권4호
    • /
    • pp.275-288
    • /
    • 2023
  • Based on the crucial role of high-speed railway bridges (HSRBs) in the safety of high-speed railway operations, it is an important approach to mitigate earthquake hazards by proceeding with seismic risk assessments in their whole life. Bridge seismic risk assessment, which usually evaluates the seismic performance of bridges from a probabilistic perspective, provides technical support for bridge risk management. The seismic performance of bridges is greatly affected by the degradation of material properties, therefore, material damage plays a nonnegligible role in the seismic risk assessment of the bridge. The effect of material damage is not considered in most current studies on seismic risk analysis of bridges, nevertheless. To fill the gap in this area, in this paper, a nonlinear dynamic time-history analysis has been carried out by establishing OpenSees finite element model, and a seismic vulnerability analysis is carried out based on the incremental dynamic analysis (IDA) method. On this basis, combined with the site risk analysis, the time-dependent seismic risk analysis of an offshore three-span HSRB in the whole life cycle has been conducted. The results showed that the seismic risk probabilities of both components and system of the bridge increase with the service time, and their seismic risk probabilities increase significantly in the last service period due to the degradation of the material strength, which demonstrates that the impact of durability damage should be considered when evaluating the seismic performance of bridges in the design and service period.

The conditional risk probability-based seawall height design method

  • Yang, Xing;Hu, Xiaodong;Li, Zhiqing
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제7권6호
    • /
    • pp.1007-1019
    • /
    • 2015
  • The determination of the required seawall height is usually based on the combination of wind speed (or wave height) and still water level according to a specified return period, e.g., 50-year return period wind speed and 50-year return period still water level. In reality, the two variables are be partially correlated. This may be lead to over-design (costs) of seawall structures. The above-mentioned return period for the design of a seawall depends on economy, society and natural environment in the region. This means a specified risk level of overtopping or damage of a seawall structure is usually allowed. The aim of this paper is to present a conditional risk probability-based seawall height design method which incorporates the correlation of the two variables. For purposes of demonstration, the wind speeds and water levels collected from Jiangsu of China are analyzed. The results show this method can improve seawall height design accuracy.

도시 소유역 내 내수침수 위험도 평가 : 강우 시간분포 및 이중배수체계 모형을 중심으로 (Risk assessment for inland flooding in a small urban catchment : Focusing on the temporal distribution of rainfall and dual drainage model)

  • 이재현;박기홍;전창현;오재일
    • 상하수도학회지
    • /
    • 제35권6호
    • /
    • pp.389-403
    • /
    • 2021
  • In this study, dual drainage system based runoff model was established for W-drainage area in G-si, and considering the various rainfall characteristics determined using Huff and Mononobe methods, the degree of flooding in the target area was analyzed and the risk was compared and analyzed through the risk matrix method. As a result, the Monobe method compared to the Huff method was analyzed to be suitable analysis for flooding of recent heavy rain, and the validity of the dynamic risk assessment considering the weight of the occurrence probability as the return period was verified through the risk matrix-based analysis. However, since the definition and estimating criteria of the flood risk matrix proposed in this study are based on the return period for extreme rainfall and the depth of flooding according to the results of applying the dual drainage model, there is a limitation in that it is difficult to consider the main factors which are direct impact on inland flooding such as city maintenance and life protection functions. In the future, if various factors affecting inland flood damage are reflected in addition to the amount of flood damage, the flood risk matrix concept proposed in this study can be used as basic information for preparation and prevention of inland flooding, as well as it is judged that it can be considered as a major evaluation item in the selection of the priority management area for sewage maintenance for countermeasures against inland flooding.

기상자료를 이용한 우리나라 한중콘크리트 적용기간과 초기동해 위험일 산정 (Determination of the Cold Weather Concreting Period and Early Frost Damage Risk Using Climate Data of Korea)

  • 한민철;이준석
    • 한국건축시공학회지
    • /
    • 제17권1호
    • /
    • pp.73-81
    • /
    • 2017
  • 본 연구는 기상자료를 토대로 우리나라 각 지역별 한중 콘크리트 적용기간을 KCI 및 AIJ 규정에 의한 방법으로 각각 산정하고 초기동해 위험일을 각 지역 및 온도 단계별로 제안하고자 하였다. 한중 콘크리트 적용기간의 경우 최근 5년간의 기상자료를 토대로 조사한 결과와 종전의 연구결과를 비교하였다. 연구결과에 따르면 국내 91개 지역의 한중 콘크리트 적용기간은 평균 98일로 조사되었고, 고위도 지역일수록, 산악 및 내륙지역일수록 적용기간은 증가되는 것으로 나타났으며, 종전 연구 대비 본 연구의 적용기간이 1~2일 정도 감소되는 것으로 나타났다. 지구온난화, 도시화 등의 영향으로 판단된다. 초기동해 위험일의 경우 $-5^{\circ}C$, $-2^{\circ}C$$0^{\circ}C$ 단계별로 시작일 및 종료일을 제시하였으며, 이를 토대로 $0^{\circ}C$ 이하 출현일 수, 출현일 및 평균 추위도를 제시하였다. 본 연구 범위에서 제시된 초기동해 위험일은 KCI에 의한 한중콘크리트 적용기간보다 길게 나타난 지역이 다수 존재하여 한중콘크리트 적용기간 이외에도 초기동해 위험이 있음을 확인할 수 있었다.

Insights from existing earthquake loss assessment research in Croatia

  • Hadzima-Nyarko, Marijana;Sipos, Tanja Kalman
    • Earthquakes and Structures
    • /
    • 제13권4호
    • /
    • pp.365-375
    • /
    • 2017
  • Seismic risk management has two main technical aspects: to recommend the construction of high-performance buildings and other structures using earthquake-resistant designs or evaluate existing ones, and to prepare emergency plans using realistic seismic scenarios. An overview of seismic risk assessment methodologies in Croatia is provided with details regarding the components of the assessment procedures: hazard, vulnerability and exposure. For Croatia, hazard is presented with two maps and it is expressed in terms of the peak horizontal ground acceleration during an earthquake, with the return period of 95 or 475 years. A standard building typology catalogue for Croatia has not been prepared yet, but a database for the fourth largest city in Croatia is currently in its initial stage. Two methods for earthquake vulnerability assessment are applied and compared. The first is a relatively simple and fast analysis of potential seismic vulnerability proposed by Croatian researchers using damage index (DI) as a numerical value indicating the level of structural damage, while the second is the Macroseismic method.

인프라건설 프로젝트 리스크 분석에 따른 손실 정량화 모델 개발 연구: 교량프로젝트를 중심으로 (Development of Loss Model Based on Quantitative Risk Analysis of Infrastructure Construction Project: Focusing on Bridge Construction Project)

  • 오규호;안성진
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2022년도 봄 학술논문 발표대회
    • /
    • pp.208-209
    • /
    • 2022
  • This study aims to analyze the risk factors caused by object damage and third-party damage loss in actual bridge construction based on past insurance premium payment data from major domestic insurers for bridge construction projects, and develop a quantitative loss prediction model. For the development of quantitative bridge construction loss model, the dependent variable was selected as the loss ratio, and the independent variable adopted 1) Technical factors: superstructure type, foundation type, construction method, and bridge length 2) Natural hazards: flood anf Typhoon, 3) Project information: total construction duration, total cost and ranking. Among the selected independent variables, superstructure type, construction method, and project period were shown to affect the ratio of bridge construction losses, while superstructure, foundation, flood and ranking were shown to affect the ratio of the third-party losses.

  • PDF

A case study for determination of seismic risk priorities in Van (Eastern Turkey)

  • Buyuksarac, Aydin;Isik, Ercan;Harirchian, Ehsan
    • Earthquakes and Structures
    • /
    • 제20권4호
    • /
    • pp.445-455
    • /
    • 2021
  • Lake Van Basin, located in Eastern Turkey, is worth examining in terms of seismicity due to large-scale losses of property and life during the historical and instrumental period. The most important and largest province in this basin is Van. Recent indicators of the high seismicity risk in the province are damage occurring after devastating earthquakes in 2011 (Mw=7.2 and Mw=5.6) and lastly in 2020 Khoy (Mw=5.9). The seismic hazard analysis for Van and its districts in Eastern Turkey was performed in probabilistic manner. Analyses were made for thirteen different districts in Van. In this study, information is given about the tectonic setting and seismicity of Van. The probabilistic seismic hazard curves were obtained for a probability of exceedance of 2%, 10% and 50% in 50-year periods. The PGA values in the Van province vary from 0.24 g - 0.43 g for earthquakes with repetition period of 475 years. Risk priorities were determined for all districts. The highest risk was calculated for Çaldıran and the lowest risk was found for Gürpınar. Risk priorities for buildings in all districts were also determined via rapid seismic assessment for reinforced-concrete and masonry buildings in this study.