• Title/Summary/Keyword: Risk of Collapse

Search Result 243, Processing Time 0.029 seconds

Dynamic Response of Drill Floor to Fire Subsequent to Blowout

  • Kim, Teak-Keon;Kim, Seul-Kee;Lee, Jae-Myung
    • Journal of Ocean Engineering and Technology
    • /
    • v.34 no.2
    • /
    • pp.110-119
    • /
    • 2020
  • Explosions and fires on offshore drilling units and process plants, which cause loss of life and environmental damage, have been studied extensively. However, research on drilling units increased only after the 2010 Deepwater Horizon accident in the Gulf of Mexico. A major reason for explosions and fires on a drilling unit is blowout, which is caused by a failure to control the high temperatures and pressures upstream of the offshore underwater well. The area susceptible to explosion and fire due to blowout is the drill floor, which supports the main drilling system. Structural instability and collapse of the drill floor can threaten the structural integrity of the entire unit. This study simulates the behavior of fire subsequent to blowout and assesses the thermal load. A heat transfer structure analysis of the drill floor was carried out using the assessed thermal load, and the risk was noted. In order to maintain the structural integrity of the drill floor, passive fire protection of certain areas was recommended.

A Development of Platforms for Boiler of Thermal Power Plant (화력발전소 보일러 수퍼히트부 안전발판 개발 연구)

  • Lee, Jung Seok;Lee, Dong Lark;Kim, Hee Kyung;Jeong, Byeong Yong;Oh, Tae Keun
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.3
    • /
    • pp.34-40
    • /
    • 2017
  • The catastrophic collapse of the in-boiler scaffolding system in the two thermal power plants occurred in March and April 2012. After site investigation and document review, it was found that the specialized scaffolding system was imported for overhaul & maintenance and that the system did not get the safety certification at the import. In this regard, this study developed & proposed an access platform and a support for the vertical tube section of the super heat as well as a variable-length platform for the horizontal tube section, satisfying the domestic certification standards. The access platform was developed to be easy to handle by the worker with a weight of about 0.069 kN, which could reduce the risk of falling accidents and workers' musculoskeletal diseases. For the variable-length platform, it is possible to cope with various changes in length between the horizontal tubes associated with the increase of rigidity in the overlapping and the elimination of the protrusion.

Surgical approach for treatment of obstructive sleep apnea (폐쇄성 수면무호흡증(Obstructive Sleep Apnea)의 외과적 처치)

  • Kim, Tae-Kyung;Lee, Deok-Won
    • The Journal of the Korean dental association
    • /
    • v.53 no.12
    • /
    • pp.926-934
    • /
    • 2015
  • Obstructive sleep apnea (OSA), most common respiratory disorder of sleep, is characterized by intermittent partial or complete occlusions of the upper airway due to loss of upper airway dilating muscle activity during sleep superimposed on a narrow upper airway. Termination of these events usually requires arousal from sleep and results in sleep fragmentation and hypoxemia, which leads to poor quality of sleep, excessive daytime sleepiness, reduced quality of life and numerous other serious health consequences. Untreated OSA may cause, or be associated with, several adverse outcomes, including daytime sleepiness, increased risk for motor vehicle accidents, cardiovascular disease, and depression. Various treatments are available, including non-surgical treatment such as medication or modification of life style, continuous positive airway pressure (CPAP) and oral appliance (OA). Skeletal surgery for obstructive sleep apnea (OSA) aims to provide more space for the soft tissue in the oropharynx to prevent airway collapse during sleep. Conventional surgical techniques include uvopalatopharyngoplasty(UPPP), genioglossus advancement (GA), and maxillomandibular advancement (MMA). Surgical techniques, efficacy and complications of skeletal surgery are introduced in this review.

Robustness Design For Tall Timber Buildings

  • Voulpiotis, Konstantinos;Frangi, Andrea
    • International Journal of High-Rise Buildings
    • /
    • v.9 no.3
    • /
    • pp.245-253
    • /
    • 2020
  • With the ever-increasing height of timber buildings, the complexity of timber as a structural material gives rise to behaviors not previously studied by engineers. An urgent call is needed regarding their performance in damage scenarios: activating alternative load paths in tall timber buildings is not the same as in tall buildings made with steel and concrete. In this paper we propose a robustness framework covering all building materials, whose application in timber may lead to new conceptual designs for the next generation of tall timber buildings. Qualitatively, the importance of building scale and the distinction between localized and systematic exposures are discussed, and how existing supertall structures can be an example for future generations of tall timber buildings. Quantitatively, the robustness index is introduced alongside a method to calculate the performance of a given building regarding robustness, in order to find the most cost-effective structural solutions for improved robustness. A three-level application recommendation is made, depending on the importance of the building in question. Primarily, the paper highlights the importance of conceptual design to achieve structural robustness and encourages the practicing engineering community to use the proposed framework to quantitatively come up with the new generation of tall timber buildings.

Extreme Multi-Level Percutaneous Vertebroplasty for Newly Developed Multiple Adjacent Compression Fractures

  • Kim, Han-Woong;Song, Jae-Wook;Kwon, Austin;Kim, In-Hwan
    • Journal of Korean Neurosurgical Society
    • /
    • v.45 no.6
    • /
    • pp.378-380
    • /
    • 2009
  • Osteoporotic patients who undergo percutaneous vertebroplasty (PVP) have the risk of a repeated collapse of their adjacent vertebral body due to alteration of load transfer into the adjacent vertebral body. The authors have experienced a rare case of repeated osteoporotic vertebral compression fractures (VCF) resulting in extreme multi-level PVP. A 74-year-old female developed severe back pain after slipping down one month ago. Her X-ray and MR images indicated a T11 VCF. She underwent successful PVP with polymethylmethacrylate (PMMA). Two weeks later, she returned to our hospital due to a similar back pain. Repeated X-ray and MR images showed an adjacent VCF on T12. A retrial of PVP was performed on T12, which provided immediate pain relief. Since then, repeated collapses of the vertebral body occurred 12 times in 13 levels within a 24-month period. Each time the woman was admitted to our hospital, she was diagnosed of newly developed VCFs and underwent repeated PVPs with PMMA, which finally eased back pain. Based on our experience with this patient, repeated multiple PVP is not dangerous because its few and minor complications. Therefore, repeated PVP can serve as an effective treatment modality for extreme-multi level VCFs.

Evaluation of Wind Load and Drag Coefficient of Insect Net in a Pear Orchard using Wind Tunnel Test (풍동실험을 통한 배과원 방충망의 풍하중 및 항력계수 평가)

  • Song, Hosung;Yu, Seok-Cheol;Kim, Yu Yong;Lim, Seong-Yoon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.61 no.1
    • /
    • pp.75-83
    • /
    • 2019
  • Fruit bagging is a traditional way to produce high-quality fruit and to prevent damage from insects and diseases. Growing pears by non-bagging is concerned about the damage from insect, it can be controlled by installing a insect net facility. Wind load should be considered to design the insect net facility because it has the risk of collapse due to the strong wind. So we carried out wind tunnel test for measurement of drag force, where the insect net with porosity about 65% is selected as an experimental subject. As a result of the test, drag force was measured to be 244.14 N when insect net area and wind speed are $1m^2$ and 22.7 m/s respectively. And, drag coefficients for the insect net were found to be about 0.55~0.57, which may be used as the preliminary data to design the insect net facilities at the orchard.

Variation of Landslide Risk with Parameters (매개변수에 따른 산사태 위험도의 변화)

  • Lee, Jundae;Kwon, Youngcheul;Bae, Wooseok
    • Journal of the Korean GEO-environmental Society
    • /
    • v.19 no.1
    • /
    • pp.15-23
    • /
    • 2018
  • In this study we performed risk evaluation based on parameters using the SINMAP, GIS-based extended program in order to predict ground disaster that is frequent recently. As for the risk evaluation, in order to understand the effects of parameters, we defined that the ranges of internal friction angles and T/R values as important variables had three and four patterns, respectively. The results of the interpretation were compared with those of the existing landslide in order to identify landslide flow and to evaluate the applicability of the parameters. The analysis of the geomorphologic saturated zone showed that the boundary saturated zone and the saturated zone were almost consistent with the site of avalanche of earth and rocks and the area of underground water convergence was correlated to the area where collapse started, indicating that the geomorphologic saturated zone may serve as an index for estimating possibility of landslide when used with slope distribution, colluvial soil, and structures inducing landslide in combination. When the lower limit of the internal friction angle increased more, the upper threshold decreased by 50 to 70% and the influence on the stability index was higher, but the influence was declined within the range of lower wetness index. The analysis of changes based on wetness index range showed that all the groups have similar SI distribution, except for the one in which mean altitude values are applied, indicating that the results are susceptible more by the internal friction angle than by the wetness index.

Seismic fragility analysis of base isolation reinforced concrete structure building considering performance - a case study for Indonesia

  • Faiz Sulthan;Matsutaro Seki
    • Structural Monitoring and Maintenance
    • /
    • v.10 no.3
    • /
    • pp.243-260
    • /
    • 2023
  • Indonesia has had seismic codes for earthquake-resistant structures designs since 1970 and has been updated five times to the latest in 2019. In updating the Indonesian seismic codes, seismic hazard maps for design also update, and there are changes to the Peak Ground Acceleration (PGA). Indonesian seismic design uses the concept of building performance levels consisting of Immediate occupancy (IO), Life Safety (LS), and Collapse Prevention (CP). Related to this performance level, cases still found that buildings were damaged more than their performance targets after the earthquake. Based on the above issues, this study aims to analyze the performance of base isolation design on existing target buildings and analyze the seismic fragility for a case study in Indonesia. The target building is a prototype design 8-story medium-rise residential building using the reinforced concrete moment frame structure. Seismic fragility analysis uses Incremental Dynamic Analysis (IDA) with Nonlinear Time History Analysis (NLTHA) and eleven selected ground motions based on soil classification, magnitude, fault distance, and earthquake source mechanism. The comparison result of IDA shows a trend of significant performance improvement, with the same performance level target and risk category, the base isolation structure can be used at 1.46-3.20 times higher PGA than the fixed base structure. Then the fragility analysis results show that the fixed base structure has a safety margin of 30% and a base isolation structure of 62.5% from the PGA design. This result is useful for assessing existing buildings or considering a new building's performance.

Risk Factors for Recurrent Pneumothorax after Primary Spontaneous Pneumothorax (원발 기흉 수술 후 재발의 위험인자)

  • Yu, Jai-Kun;Lee, Seong-Ki;Seo, Hong-Joo;Seo, Min-Bum
    • Journal of Chest Surgery
    • /
    • v.41 no.6
    • /
    • pp.724-728
    • /
    • 2008
  • Background: The purpose of this study was to identify factors associated with recurrent pneumothorax after wedge resection in primary spontaneous pneumothorax in our hospital. Material and Method: Two hundred thirty-five consecutive patient (98% males; mean age, $23.9{\pm}4.5$ years) who had undergone video-assisted thoracoscopic surgery (VATS) were reviewed retrospectively. The two groups were divided as follows: group A, non-recurrent patients (225 patients [96%]); and group B, recurrent group (10 patients [4%]); the risk factors were compared between the two groups. The single and multiple factors that influenced the recurrence rate were analyzed using Cox's proportional hazard model. Result: There were no significant differences between the recurrent and non-recurrent groups in terms of gender, smoking, site of recurrence, degree of collapse, operative time, and number or weight of resected bullae. The recurrence rate was significantly more common in the following: younger ages, increased height/weight ratio, longer initial air leakage period, and shorter duration of chest drainage. Early aggressive exercise (<30 days) of patients after wedge resection increased the tendency for recurrence. Conclusion: Thoracoscopic wedge resection does not have a higher recurrence rate than open thoracotomy. However, young age, height/weight ratio, continuous air, and duration of chest tube placement were risk factors for a recurrent pneumothorax.

Stability of Tunnel under Shallow Overburden and Poor Rock Conditions Using Numerical Simulations (수치해석적 방법을 통한 저토피 및 암질불량구간의 터널 안정성 검토)

  • Kim, Jungkuk;Kim, Heesu;Ban, Hoki;Kim, Donggyou
    • Journal of the Korean GEO-environmental Society
    • /
    • v.22 no.11
    • /
    • pp.39-47
    • /
    • 2021
  • Tunneling is widely increased in rail-road construction due to the large portion of mountainous regions in Korea as well as the improving running performance of train. Tunneling under poor rock condition, shallow overburden, or existing fault zone has high risk for collapse. Therefore, this study presents the stability of tunnel under unfavorable geological conditions using finite element methods.