• Title/Summary/Keyword: Risk graph

Search Result 74, Processing Time 0.035 seconds

Fabrication of Three-Dimensional Scanning System for Inspection of Mineshaft Using Multichannel Lidar (다중채널 Lidar를 이용한 수직갱도 조사용 3차원 형상화 장비 구현)

  • Soolo, Kim;Jong-Sung, Choi;Ho-Goon, Yoon;Sang-Wook, Kim
    • Tunnel and Underground Space
    • /
    • v.32 no.6
    • /
    • pp.451-463
    • /
    • 2022
  • Whenever a mineshaft accidentally collapses, speedy risk assessment is both required and crucial. But onsite safety diagnosis by humans is reportedly difficult considering the additional risk of collapse of the unstable mineshaft. Generally, drones equipped with high-speed lidar sensors can be used for such inspection. However, the drone technology is restrictively applicable at very shallow depth, failing in mineshafts with depths of hundreds of meters because of the limit of wireless communication and turbulence inside the mineshaft. In previous study, a three-dimensional (3D) scanning system with a single channel lidar was fabricated and operated using towed cable in a mineshaft to a depth of 200 m. The rotation and pendulum movement errors of the measuring unit were compensated for by applying the data of inertial measuring unit and comparing the similarity between the scan data of the adjacent depths (Kim et al., 2020). However, the errors grew with scan depth. In this paper, a multi-channel lidar sensor to obtain a continuous cross-sectional image of the mineshaft from a winch system pulled from bottom upward. In this new approach, within overlapped region viewed by the multi-channel lidar, rotation error was compensated for by comparing the similarity between the scan data at the same depth. The fabricated system was applied to scan 0-165 m depth of the mineshaft with 180 m depth. The reconstructed image was depicted in a 3D graph for interpretation.

Probabilistic Safety Assessment of Gas Plant Using Fault Tree-based Bayesian Network (고장수목 기반 베이지안 네트워크를 이용한 가스 플랜트 시스템의 확률론적 안전성 평가)

  • Se-Hyeok Lee;Changuk Mun;Sangki Park;Jeong-Rae Cho;Junho Song
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.36 no.4
    • /
    • pp.273-282
    • /
    • 2023
  • Probabilistic safety assessment (PSA) has been widely used to evaluate the seismic risk of nuclear power plants (NPPs). However, studies on seismic PSA for process plants, such as gas plants, oil refineries, and chemical plants, have been scarce. This is because the major disasters to which these process plants are vulnerable include explosions, fires, and release (or dispersion) of toxic chemicals. However, seismic PSA is essential for the plants located in regions with significant earthquake risks. Seismic PSA entails probabilistic seismic hazard analysis (PSHA), event tree analysis (ETA), fault tree analysis (FTA), and fragility analysis for the structures and essential equipment items. Among those analyses, ETA can depict the accident sequence for core damage, which is the worst disaster and top event concerning NPPs. However, there is no general top event with regard to process plants. Therefore, PSA cannot be directly applied to process plants. Moreover, there is a paucity of studies on developing fragility curves for various equipment. This paper introduces PSA for gas plants based on FTA, which is then transformed into Bayesian network, that is, a probabilistic graph model that can aid risk-informed decision-making. Finally, the proposed method is applied to a gas plant, and several decision-making cases are demonstrated.

Corporate Bond Rating Using Various Multiclass Support Vector Machines (다양한 다분류 SVM을 적용한 기업채권평가)

  • Ahn, Hyun-Chul;Kim, Kyoung-Jae
    • Asia pacific journal of information systems
    • /
    • v.19 no.2
    • /
    • pp.157-178
    • /
    • 2009
  • Corporate credit rating is a very important factor in the market for corporate debt. Information concerning corporate operations is often disseminated to market participants through the changes in credit ratings that are published by professional rating agencies, such as Standard and Poor's (S&P) and Moody's Investor Service. Since these agencies generally require a large fee for the service, and the periodically provided ratings sometimes do not reflect the default risk of the company at the time, it may be advantageous for bond-market participants to be able to classify credit ratings before the agencies actually publish them. As a result, it is very important for companies (especially, financial companies) to develop a proper model of credit rating. From a technical perspective, the credit rating constitutes a typical, multiclass, classification problem because rating agencies generally have ten or more categories of ratings. For example, S&P's ratings range from AAA for the highest-quality bonds to D for the lowest-quality bonds. The professional rating agencies emphasize the importance of analysts' subjective judgments in the determination of credit ratings. However, in practice, a mathematical model that uses the financial variables of companies plays an important role in determining credit ratings, since it is convenient to apply and cost efficient. These financial variables include the ratios that represent a company's leverage status, liquidity status, and profitability status. Several statistical and artificial intelligence (AI) techniques have been applied as tools for predicting credit ratings. Among them, artificial neural networks are most prevalent in the area of finance because of their broad applicability to many business problems and their preeminent ability to adapt. However, artificial neural networks also have many defects, including the difficulty in determining the values of the control parameters and the number of processing elements in the layer as well as the risk of over-fitting. Of late, because of their robustness and high accuracy, support vector machines (SVMs) have become popular as a solution for problems with generating accurate prediction. An SVM's solution may be globally optimal because SVMs seek to minimize structural risk. On the other hand, artificial neural network models may tend to find locally optimal solutions because they seek to minimize empirical risk. In addition, no parameters need to be tuned in SVMs, barring the upper bound for non-separable cases in linear SVMs. Since SVMs were originally devised for binary classification, however they are not intrinsically geared for multiclass classifications as in credit ratings. Thus, researchers have tried to extend the original SVM to multiclass classification. Hitherto, a variety of techniques to extend standard SVMs to multiclass SVMs (MSVMs) has been proposed in the literature Only a few types of MSVM are, however, tested using prior studies that apply MSVMs to credit ratings studies. In this study, we examined six different techniques of MSVMs: (1) One-Against-One, (2) One-Against-AIL (3) DAGSVM, (4) ECOC, (5) Method of Weston and Watkins, and (6) Method of Crammer and Singer. In addition, we examined the prediction accuracy of some modified version of conventional MSVM techniques. To find the most appropriate technique of MSVMs for corporate bond rating, we applied all the techniques of MSVMs to a real-world case of credit rating in Korea. The best application is in corporate bond rating, which is the most frequently studied area of credit rating for specific debt issues or other financial obligations. For our study the research data were collected from National Information and Credit Evaluation, Inc., a major bond-rating company in Korea. The data set is comprised of the bond-ratings for the year 2002 and various financial variables for 1,295 companies from the manufacturing industry in Korea. We compared the results of these techniques with one another, and with those of traditional methods for credit ratings, such as multiple discriminant analysis (MDA), multinomial logistic regression (MLOGIT), and artificial neural networks (ANNs). As a result, we found that DAGSVM with an ordered list was the best approach for the prediction of bond rating. In addition, we found that the modified version of ECOC approach can yield higher prediction accuracy for the cases showing clear patterns.

Composition of Curriculums and Textbooks for Speed-Related Units in Elementary School (초등학교에서 속력 관련 단원의 교육과정 및 교과서 내용 구성에 관한 논의)

  • Jhun, Youngseok
    • Journal of Korean Elementary Science Education
    • /
    • v.41 no.4
    • /
    • pp.658-672
    • /
    • 2022
  • The unique teaching and learning difficulties of speed-related units in elementary school science are mainly due to the student's lack of mathematical thinking ability and procedural knowledge on speed measurement, and curriculums and textbooks must be constructed with these in mind. To identify the implications of composing a new science curriculum and relevant textbooks, this study reviewed the structure and contents of the speed-related units of three curriculums from the 2007 revised curriculum to the 2015 revised curriculum and the resulting textbooks and examined their relevance in light of the literature. Results showed that the current content carries the risk of making students calculate only the speed of an object through a mechanical algorithm by memorization rather than grasp the multifaceted relation between traveled distance, duration time, and speed. Findings also highlighted the need to reorganize the curriculum and textbooks to offer students the opportunity to learn the meaning of speed step-by-step by visualizing materials such as double number lines and dealing with simple numbers that are easy to calculate and understand intuitively. In addition, this paper discussed the urgency of improving inquiry performance such as process skills by observing and measuring an actual object's movement, displaying it as a graph, and interpreting it rather than conducting data interpretation through investigation. Lastly, although the current curriculum and textbooks emphasize the connection with daily life in their application aspects, they also deal with dynamics-related content somewhat differently from kinematics, which is the main learning content of the unit. Hence, it is necessary to reorganize the contents focusing on cases related to speed so that students can grasp the concept of speed and use it in their everyday lives. With regard to the new curriculum and textbooks, this study proposes that students be provided the opportunity to systematically and deeply study core topics rather than exclude content that is difficult to learn and challenging to teach so that students realize the value of science and enjoy learning it.

Rainfall Variations of Temporal Characteristics of Korea Using Rainfall Indicators (강수지표를 이용한 우리나라 강수량의 시간적인 특성 변화)

  • Hong, Seong-Hyun;Kim, Young-Gyu;Lee, Won-Hyun;Chung, Eun-Sung
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.4
    • /
    • pp.393-407
    • /
    • 2012
  • This study suggests the results of temporal and spatial variations for rainfall data in the Korean Peninsula. We got the index of the rainfall amount, frequency and extreme indices from 65 weather stations. The results could be easily understood by drawing the graph, and the Mann-Kendall trend analysis was also used to determine the tendency (up & downward/no trend) of rainfall and temperature where the trend could not be clear. Moreover, by using the FARD, frequency probability rainfalls could be calculated for 100 and 200 years and then compared each other value through the moment method, maximum likelihood method and probability weighted moments. The Average Rainfall Index (ARI) which is meant comprehensive rainfalls risk for the flood could be obtained from calculating an arithmetic mean of the RI for Amount (RIA), RI for Extreme (RIE), and RI for Frequency (RIF) and as well as the characteristics of rainfalls have been mainly classified into Amount, Extremes, and Frequency. As a result, these each Average Rainfall Indices could be increased respectively into 22.3%, 26.2%, and 5.1% for a recent decade. Since this study showed the recent climate change trend in detail, it will be useful data for the research of climate change adaptation.

A Study of Power Law Distribution of Korean Disaster and Identification of Focusing Events (한국 재난의 멱함수분포와 사회적 충격사건에 관한 연구)

  • Kim, Yongkyun;Kim, Sang Pil;Cho, Hyoung-Sig;Sohn, Hong-Gyoo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.1
    • /
    • pp.181-190
    • /
    • 2016
  • Improvements in disaster management has become a global necessity because the magnitude of disasters is intensifying in parallel with the increased disaster damage. The disaster risk in Korea is also increasing due to the emergence of new types of disaster; such as the Middle East respiratory syndrome coronavirus, the increase of complex disasters, and the heightened probability of a catastrophic event due to climate change. This paper aimed to identify the disaster loss-frequency relationship from 1948 to 2014 in Korea by using four types of variables. In addition, this paper found major disasters that resulted in the reformation of disaster response organizations, and inputted the deaths and economic loss attributed to those disasters into the disaster loss-frequency graph. The research result substantiated that the disaster loss-frequency relationship in Korea follows the Power Law and found the coefficients of each Power Function. Additionally, this paper found that most of the reformations of disaster response organizations happened after major disasters that concentrated societies attention and anger due to the high human and economic impact; such events are labelled as "focusing events." These focusing events, with the characteristics of a low probability and high impact, are located in the long tail of the Power Law Distribution. This paper suggests that the effective public policy for disaster response needs to be developed by paying attention to 'low probability and high impact' focusing events that are located in the long tail of the Power Law Distribution.

Development of Real-Time Forecasting System of Marine Environmental Information for Ship Routing (항해지원을 위한 해양환경정보 실시간 예보시스템 개발)

  • Hong Keyyong;Shin Seung-Ho;Song Museok
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.8 no.1
    • /
    • pp.46-52
    • /
    • 2005
  • A marine environmental information system (MEIS) useful for optimal route planning of ships running in the ocean was developed. Utilizing the simulated marine environmental data produced by the European Center for Medium-Range Weather Forecasts based on global environmental data observed by satellites, the real-time forecast and long-term statistics of marine environments around planned and probable ship routes are provided. The MEIS consists of a land-based data acquisition and analysis system(MEIS-Center) and a onboard information display system(MEIS-Ship) for graphic description of marine information and optimal route planning of ships. Also, it uses of satellite communication system for data transfer. The marine environmental components of winds, waves, air pressures and storms are provided, in which winds are described by speed and direction and waves are expressed in terms of height, direction and period for both of wind waves and swells. The real-time information is characterized by 0.5° resolution, 10 day forecast in 6 hour interval and daily update. The statistic information of monthly average and maximum value expected for a return period is featured by 1.5° resolution and based on 15 year database. The MEIS-Ship include an editing tool for route simulation and the forecasting and statistic information on planned routes can be displayed in graph or table. The MEIS enables for navigators to design an optimal navigational route that minimizes probable risk and operational cost.

  • PDF

Speech Outcome after Closure of Oronasal Fistula Following Cleft Palate Repair: A report of a case (구개봉합술 후 발생한 구비강누공의 폐쇄 후 말소리 결과 : 증례보고)

  • Seo, Min-Gyo;Kim, Da-Wa;Kim, Eun-Ju;Yoon, Bo-Keun;Kim, Seong-Il;Leem, Dae-Ho;Ko, Seung-O;Moon, Seung-Young;Kim, Hyun-Ki;Shin, Hyo-Keun
    • Korean Journal of Cleft Lip And Palate
    • /
    • v.12 no.1
    • /
    • pp.1-6
    • /
    • 2009
  • Oronasal fistula are a well-known complication of surgical treatment of cleft palate, occurring most frequently in the alveolus and hard palate. Previous reports have demonstrated that oronasal fistulas, particularly if greater than l cm in diameter, had an adverse effect on speech. The aim of this study was to demonstrate the relationship between the size of the fistula and the influence on velopharyngeal function. The site and size of the fistula were indicated on graph paper with calipers and measured in $mm^2$. Speech assessment was carried out using a Nasometer, VPI articulation differential test, spectrography. Patient whose fistulas affected their speech had significantly larger fistulas than those whose fistulas did not. The study shows that the larger the fistula, the greater the risk of hypernasality and nasal emission, but even small fistulas can cause speech problems. If obstruction of the nasal passage is eliminated in a patient with a previously asymptomatic fistula, it may result in a fistula becoming symptomatic, resulting in hypernasality and nasal emission. In conclusion, even small fistulas can influence speech production and should be considered before any treatment is planned. The study lends support to early closure of oronasal fistulas, particularly before pharyngeal flap surgery is contemplated.

  • PDF

Case Studies of Comparing EN 954-1 and EN ISO 13849-1 Standard for Design of Industrial Machinery Safety Control System

  • Kim, Tae-Ho;Kim, Hong-Ki;Yoon, Hoon Yong
    • Journal of the Ergonomics Society of Korea
    • /
    • v.32 no.3
    • /
    • pp.279-291
    • /
    • 2013
  • Objective: The aim of this study was to compare old standard EN 954-1 and new standard EN ISO 13849-1 through case study and provide necessity of adaptation of EN ISO 13849-1 in Korea. Background: International and EU harmonized standard EN ISO 13849 "safety of machinery - Safety-related parts of control system" is classified into Part 1: General principles for design and Part 2: Validation. EN ISO 13849-1 standard was introduced in Official Journal of the European Union on September 8, 2009 as harmonized standard, and old standard EN 954-1 was withdrawn on December 31, 2011. So, EU decided to use of EN ISO 13849-1 standard forcibly from January 1, 2012 for safety of machinery. New machines need to be CE marked if they are to be placed on the market in the European Economic Area(EEA), Switzerland or Turkey, and Korean machine builder should apply EN ISO 3849-1 standard for safety of machinery accordingly. However, current Korean Safety Certification system(KCs mark) for dangerous machinery is not referred to EN ISO 13849-1 standard as safety standard. There is a need of research for adaptation of EN ISO 13849-1 standard in Korea as safety standards for new design of safety-related control system which use mostly electronic components. Method: Five case studies of representative designs for safety-related control system in accordance with EN 954-1were selected according to safety category from B to 4. And these five representative designs were tried to change new design in accordance with EN ISO 13849-1 standard. The results of comparison were analyzed in aspect of economy and technical complexity. Results: The results showed that EN ISO 13849-1 provided quantitative method of application and it enabled designers to create safety-related control systems that require fewer components and less wiring, with many of the components being to a lower specification and, therefore, less costly. Conclusion: EN ISO 13849-1 standard is good for electronic safety-related control systems compare to EN 954-1. By considering the importance of application of EN ISO 13849-1 and benefits, the application of EN ISO 13849-1 as safety standard for safety of machinery is urgent in Korea. Application: The results of comparing EN 954-1 and EN ISO 13849-1 standard might help to determine the adaptation of EN ISO 13849-1 standard for safety of industrial machinery in Korea.

Characteristics of Humidifier Use in Korean Pregnant Women: The Mothers and Children's Environmental Health (MOCEH) Study

  • Chang, Moon-Hee;Park, Hye-Sook;Ha, Min-A;Kim, Yang-Ho;Hong, Yun-Chul;Ha, Eun-Hee
    • Environmental Analysis Health and Toxicology
    • /
    • v.27
    • /
    • pp.3.1-3.4
    • /
    • 2012
  • Objectives: The current use of humidifier detergent and its harmful impact on humans has arisen as a societal environmental health issue. Therefore, in this study we aimed to explore the relationship between demo-socio characteristics and humidifier use, as well as the monthly usage changes in pregnant women; thus, we report the actual status of humidifier usage of Korea's pregnant population. Methods: From a birth cohort of a Mothers and Children's Environmental Health (MOCEH) study, 1,144 pregnant women who responded through questionnaires including demo-socio characteristics, obstetric status and household environment including whether they use humidifier and frequency of use were included in this study. Statistical analyses were performed to explore the relationship between maternal characteristics and the relevance of the use of humidifiers was performed using a chi-square test, a t-test and univariate logistic regression analysis. The monthly usage rate was demonstrated in the graph. Results: The humidifier usage rate in pregnant women was 28.2%. The average frequency of humidifier usage was 4.6 days per week, 7.3 hours per day. The usage rate was higher in the multipara group and the above the age of 34 age group than in the primipara and below the age of 34 groups. Seoul showed a higher usage rate than Cheonan and Ulsan and as the education level and income increased, the usage rate of humidifiers among pregnant women also increased. In the monthly trend of usage rate, the winter season showed the highest usage rate of over 45% and the lowest in late summer and beginning of fall with a value of 12% or less. Conclusions: During pregnancy, the mother's body is especially vulnerable to hazardous environmental exposure that not only affects the pregnant woman but also the fetus. Further research is still needed to elucidate the route and effect of environmental risk factors. Therefore, based on precautionary and preventive principles, special interest and caution in harmful environments are strongly needed not only at an individual level but also at a national level.