This study analyzed the risk spillover of BDI on shipping company stock prices through the Copula-CoVaR method based on daily data from January 4, 2010, to October 31, 2022. The main empirical analysis results and policy implications are as follows. First, copula results showed that there was a weak dependence between BDI and shipping company stock prices, and PAN, KOR, and YEN were selected as the most fitting model for dynamic Student-t copula, HMM was selected as the rotated Gumbel copula, and KSS was selected as the best model. Second, in the results of CoVaR, it was confirmed that the upside (downside) CoVaR was significantly different from the upside (downside) VaR in all shipping companies. This means that BDI has a significant risk spillover on shipping companies. In addition, as for the risk spillover, the downside risk is generally lower than the upside risk, so the downside and upside risk spillover were found to be asymmetrical. Therefore, policymakers should strengthen external risk supervision and establish differentiated policies suitable for domestic conditions to prevent systematic risks from BDI shocks. And investors should reflect external risks from BDI fluctuations in their investment decisions and construct optimal investment portfolios to avoid risks. On the other hand, investors propose that the investment portfolio should be adjusted in consideration of the asymmetric characteristics of up and down risks when making investment decisions.
Communications for Statistical Applications and Methods
/
v.23
no.3
/
pp.203-213
/
2016
We investigate volatility spillover aspects of realized volatilities (RVs) for the log returns of the Korea Composite Stock Price Index (KOSPI) and the Hang Seng Index (HSI) from 2009-2013. For all RVs, significant long memories and asymmetries are identified. For a model selection, we consider three commonly used time series models as well as three models that incorporate long memory and asymmetry. Taking into account of goodness-of-fit and forecasting ability, Leverage heteroskedastic autoregressive realized volatility (LHAR) model is selected for the given data. The LHAR model finds significant decompositions of the spillover effect from the HSI to the KOSPI into moderate negative daily spillover, positive weekly spillover and positive monthly spillover, and from the KOSPI to the HSI into substantial negative weekly spillover and positive monthly spillover. An interesting result from the analysis is that the daily volatility spillover from the HSI to the KOSPI is significant versus the insignificant daily volatility spillover of the KOSPI to HSI. The daily volatility in Hong Kong affects next day volatility in Korea but the daily volatility in Korea does not affect next day volatility in Hong Kong.
The Journal of Asian Finance, Economics and Business
/
v.8
no.2
/
pp.747-757
/
2021
The primary purpose of the study is to investigate the volatility spillover from financial uncertainty (FU) of the United States (US) to the stock markets of SAARC member countries including India, Sri-Lanka, Pakistan, and Bangladesh. The empirical literature overlooked SAARC countries and the FU index. Based on the estimation method, the data of FU is available for three different forecast horizons including 1-month, 3-months, and 12-months. For empirical analysis, monthly data is used from February 2013 to September 2019. EGARCH model is employed to investigate the volatility spillover effects. The findings of the study show that the spillover effect of FU varies with the forecast horizon. The FU with a higher forecast horizon has a significant spillover effect on more countries. The spillover effect of US financial uncertainty is negative in most of the SAARC countries. Bangladesh stock market is influenced by FU with all three forecast horizons whereas the volatility of the Pakistan stock market is not influenced by FU with any forecast horizon. The findings are consistent with the concept of "limited trade openness" in the financial markets of emerging economies. The emerging economies avoid financial market openness to minimize the risk of spillover of other countries.
This paper examines the dynamic relationship between fund flow and market risk at the aggregate level and explores whether sudden sharp changes in fund flow (fund run) can cause a systemic risk in the Korean financial markets. We use daily and weekly data and regression and VAR analysis. Main results of the paper are as follows: First, in the stock market, a concurrent and a lagged unexpected fund flows have a positive relationship with market volatility. A positive shock in fund flow predicts an increase in stock market volatility. In the bond market, an unexpected fund flow has a negative relationship with the default risk premium, but a positive relationship with the term premium. And an unexpected fund flow of the money market fund has a negative relationship with the liquidy risk, but the explanatory power is very low. Second, for examining whether changes in fund flow induce a systemic risk, we construct a spillover index based on the forecast error variance decomposition of VAR model. A spillover index represents that how much the shock in fund flow can explain the change of market risk in a market. In general, explanatory powers from spillover indexes are so fluctuant and low. In the stock market, the impact of shocks in fund flow on market risk is relatively high and persistent during the period from the end of 2007 to 2008, which is the subprime-mortgage crisis period. In bond market, since the end of 2008, the impact of shocks in fund flow spreads to default risk continually, while in the money market, such a systematic effect doesn't take place. The persistent patterns of spillover effect appearing around a certain period in the stock market and the bond market suggest that the shock to the unexpected fund flow may increase the market risk and can be a cause of systemic risk in the financial markets. However, summarizing the results of regression and VAR model analysis, and considering the very low explanatory power of spillover index analysis, we can conclude that changes in fund flow have a very limited power in explaining changes in market risk and it is not very likely to induce the systemic risk by a fund run in the Korean financial markets.
The purpose of this study is to verify information spillover effects using returns of macroeconomic variables and hotel leisure stock index daily data from January 4, 2000 to December 30, 2015. The findings and implications of the research can be summarized as follows. First, based on time-varying AR(1)-GARCH(1,1) models no evidence of statistically significant conditional mean and volatility spillover effects from returns of macroeconomic variables on the hotel leisure stock index was observed. In addition, no evidence of price volatility spillover from macroeconomic variables on the hotel leisure market was observed. Second, it was discovered that there exists a significantly negative relationship between the return of ER and hotel leisure stock prices, but a positive relationship between the KOSPI and hotel leisure stock prices. Finally, the study also found that was a significantly positive relationship between the volatility of DUB and hotel leisure market, and an adversely negative relationship between the volatility of ER and hotel leisure market. The results of this study are expected to contribute by providing useful information for investment strategies, as well as for risk management for investors and managers.
We investigate interconnectedness and the contagion effect of default risk in Asian sovereign CDS markets since the global financial crisis. Using dynamic conditional correlation analysis, we find that there are significant co-movements in Asian sovereign CDS markets; that such co-movements tend to be larger between developing countries than between developed and developing countries; and that in the co-movements intra-regional nature is stronger than inter-regional nature. With the Spillover Index model, we measure contagion probabilities of sovereign default risk in CDS markets of seven Asian countries and find evidence of contagion effects among six of them; Japan is the exception. In addition, we find that these six countries are affected more by cross-market spillovers than by their own-market spillovers. Furthermore, a rolling-sample analysis reveals that contagion in the Asian sovereign CDS markets expands during episodes of extreme economic and financial distress, such as the Lehman Brothers bankruptcy, the European financial crisis, and the US-credit downgrade.
Fama asserted that in an efficient market, we can't make a trading rule that consistently outperforms the average stock market returns. This study aims to suggest a machine learning algorithm to improve the trading performance of an intraday short volatility strategy applying asymmetric volatility spillover effect, and analyze its trading performance improvement. Generally stock market volatility has a negative relation with stock market return and the Korean stock market volatility is influenced by the US stock market volatility. This volatility spillover effect is asymmetric. The asymmetric volatility spillover effect refers to the phenomenon that the US stock market volatility up and down differently influence the next day's volatility of the Korean stock market. We collected the S&P 500 index, VIX, KOSPI 200 index, and V-KOSPI 200 from 2008 to 2018. We found the negative relation between the S&P 500 and VIX, and the KOSPI 200 and V-KOSPI 200. We also documented the strong volatility spillover effect from the VIX to the V-KOSPI 200. Interestingly, the asymmetric volatility spillover was also found. Whereas the VIX up is fully reflected in the opening volatility of the V-KOSPI 200, the VIX down influences partially in the opening volatility and its influence lasts to the Korean market close. If the stock market is efficient, there is no reason why there exists the asymmetric volatility spillover effect. It is a counter example of the efficient market hypothesis. To utilize this type of anomalous volatility spillover pattern, we analyzed the intraday volatility selling strategy. This strategy sells short the Korean volatility market in the morning after the US stock market volatility closes down and takes no position in the volatility market after the VIX closes up. It produced profit every year between 2008 and 2018 and the percent profitable is 68%. The trading performance showed the higher average annual return of 129% relative to the benchmark average annual return of 33%. The maximum draw down, MDD, is -41%, which is lower than that of benchmark -101%. The Sharpe ratio 0.32 of SVS strategy is much greater than the Sharpe ratio 0.08 of the Benchmark strategy. The Sharpe ratio simultaneously considers return and risk and is calculated as return divided by risk. Therefore, high Sharpe ratio means high performance when comparing different strategies with different risk and return structure. Real world trading gives rise to the trading costs including brokerage cost and slippage cost. When the trading cost is considered, the performance difference between 76% and -10% average annual returns becomes clear. To improve the performance of the suggested volatility trading strategy, we used the well-known SVM algorithm. Input variables include the VIX close to close return at day t-1, the VIX open to close return at day t-1, the VK open return at day t, and output is the up and down classification of the VK open to close return at day t. The training period is from 2008 to 2014 and the testing period is from 2015 to 2018. The kernel functions are linear function, radial basis function, and polynomial function. We suggested the modified-short volatility strategy that sells the VK in the morning when the SVM output is Down and takes no position when the SVM output is Up. The trading performance was remarkably improved. The 5-year testing period trading results of the m-SVS strategy showed very high profit and low risk relative to the benchmark SVS strategy. The annual return of the m-SVS strategy is 123% and it is higher than that of SVS strategy. The risk factor, MDD, was also significantly improved from -41% to -29%.
Purpose - We document the impact of economic policy uncertainty (EPU) in the US and China on the dynamic spillover effect of macroeconomics such as stock price, housing price in Korea. Research design, data, and methodology - We use the nine variables to analyze the effect which produces a result among the EPU indexes of the US and China on economic variables which is the consumer price index (CPI), housing purchase price composite index, housing lease price, the stock price index in banking industry, construction industry and distribution industry, and composite leading indicator from January 1995 to December 2016 with the Vector Error Correction Model. Result - The US EPU index has significantly a negative relation on the CPI, housing purchase price index, housing lease price index, the stock price index in banking industry, construction industry, and distribution industry in Korea. Conclusions - We find the dynamic effect of the EPU indexes in the US and China on the macroeconomics returns in Korea. This study has an empirical evidence that the economy market in Korea is influenced by the EPU index of the US rather than it of China. The higher EPU, the more risky the economy of in Korea.
The Journal of Asian Finance, Economics and Business
/
v.8
no.3
/
pp.31-38
/
2021
The study investigates the diversification behavior of Islamic stocks against US financial uncertainty. Considering limitations found in the literature, a comprehensive index of financial uncertainty (FU) is used, developed by Jurado, Ludvigson, and Ng (2015). The empirical analysis uses monthly data from four Islamic markets - Saudi Arabia, Malaysia, Indonesia, and Turkey - for the period from January 2010 to September 2019. Results of the bivariate EGARCH models show that Islamic stocks can be used for diversification purpose against the financial uncertainty of the US because the volatility of US uncertainty does not propagate in the Islamic stock markets. Moreover, findings show that the spillover effect of financial uncertainty varies with the FU forecast horizon. The spillover effect of FU increases with an increase in the FU forecast horizon and becomes significant over 3-month and 12-month periods in the case of Saudi Arabia. The current volatility of Islamic stock returns is independent of the size of shocks in past volatility. The leverage effect and asymmetry have been found in Saudi Arabia and Malaysia. The findings validate the arguments of the literature that Islamic markets are resilient facing uncertainties and perform well during crisis periods. The findings are important for investors in making better portfolio decisions.
The Baltic Capesize Index (BCI), which is used as an indicator for marine transportation of steel raw materials, is one of the key economic indexes for managing the risk of loss due to rapid market fluctuations when steel companies establish business strategies and procuring plans for raw materials. Still, the conditions of supply and demand of steel raw materials has been extremely affected by volatility shocks from drastic events like the financial crisis such as the Lehman Brothers incident and changes in the external environment such as COVID-19. And, especially since the 2008 financial crisis, endeavors to predict the market conditions of the steel raw material is becoming more and more arduous for the deepening uncertainty and increased volatility of BCI, which has been used as a leading indicator of the real economy. This study investigates the correlation between the steel raw material market and the marine transportation market by estimating the spillover effect of information between markets. The vector error correction model (VECM) was used to analyze information transfer based on the correlation between the BCI and crude steel production, capesize fleet supply, raw material price, and cargo volume.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.