• 제목/요약/키워드: Riser support

검색결과 11건 처리시간 0.021초

Evaluation of the Effect of Riser Support System on Global Spar Motion by Time-domain Nonlinear Hull/Mooring/Riser Coupled Analysis

  • KOO BON-JUN;KIM MOO-HYUN
    • 한국해양공학회지
    • /
    • 제19권5호
    • /
    • pp.16-25
    • /
    • 2005
  • The effect of vertical riser support system on the dynamic behaviour of a classical spar platform is investigated. Spar platform generally uses buoyancy-can riser support system, but as water depth gets deeper the alternative riser support system is required due to safety and cost issues. The alternative riser support system is to hang risers off the spar platform using pneumatic cylinders rather than the buoyancy-can. The existing numerical model for hull/mooring/riser coupled dynamics analysis treats riser as an elastic rod truncated at the keel (truncated riser model), thus, in this model, the effect of riser support system can not be modeled correctly. Due to this reason, the truncated riser model tends to overestimate the spar pitch and heave motion. To evaluate more realistic global spar motion, mechanical coupling among risers, guide frames and support cylinders inside of spar moon-pool should be modeled. In the newly developed model, the risers are extended through the moon-pool by using nonlinear finite element methods with realistic boundary condition at multiple guide frames. In the simulation, the vertical tension from pneumatic cylinders is modeled by using ideal-gas equation and the vertical tension from buoyancy-cans is modeled as constant top tension. The different dynamic characteristics between buoyancy-can riser support system and pneumatic riser support system are extensively studied. The alternative riser support system tends to increase spar heave motion and needs damper system to reduce the spar heave motion.

FPSO Riser 지지 구조의 강도설계에 대한 위상최적화 응용 (An Application of Topology Optimization for Strength Design of FPSO Riser Support Structure)

  • 송창용;정준모;심천식
    • 한국해양공학회지
    • /
    • 제24권1호
    • /
    • pp.153-160
    • /
    • 2010
  • This paper deals with the topology optimized design of the riser support structures for floating production storage and offloading units (FPSOs) under global and local loading conditions. For a preliminary study and validation of the numerical approach, a simplified plate under static loading is first evaluated with the representative topology optimization methods, the Homogenization Design Method (HDM) and Density Method (DM) or Simple Isotropic Material with Penalization (SIMP). In the context of the corresponding riser support structures, the design problem is formulated such that structure shapes based on design domain variables are determined by minimizing the compliance subject to a mass target, considering the stress criterion. An initial design model is generated based on an actual FPSO riser support configuration. The topology optimization results present improved design performances under various loading conditions, while staying within the allowable limit of the offshore area.

Approximate Optimization Using Moving Least Squares Response Surface Methods: Application to FPSO Riser Support Design

  • Song, Chang-Yong;Lee, Jong-Soo;Choung, Joon-Mo
    • 한국해양공학회지
    • /
    • 제24권1호
    • /
    • pp.20-33
    • /
    • 2010
  • The paper deals with strength design of a riser support installed on floating production storage and offloading (FPSO) vessel under various loading conditions - operation, extreme, damaged, one line failure case (OLFC) and installation. The design problem is formulated such that thickness sizing variables are determined by minimizing the weight of a riser support structure subject to stresses constraints. The initial design model is generated based on an actual FPSO riser support specification. The finite element analysis (FEA) is conducted using MSC/NASTRAN, and optimal solutions are obtained via moving least squares method (MLSM) in the context of response surface based approximate optimization. For the meta-modeling of inequality constraint functions of stresses, a constraint-feasible moving least squares method (CF-MLSM) is used in the present study. The method of CF-MLSM, compared to a conventional MLSM, has been shown to ensure the constraint feasibility in a case where the approximate optimization process is employed. The optimization results present improved design performances under various riser operating conditions.

DESIGN STUDY OF AN IHX SUPPORT STRUCTURE FOR A POOL-TYPE SODIUM-COOLED FAST REACTOR

  • Park, Chang-Gyu;Kim, Jong-Bum;Lee, Jae-Han
    • Nuclear Engineering and Technology
    • /
    • 제41권10호
    • /
    • pp.1323-1332
    • /
    • 2009
  • The IHX (Intermediate Heat eXchanger) for a pool-type SFR (Sodium-cooled Fast Reactor) system transfers heat from the primary high temperature sodium to the intermediate cold temperature sodium. The upper structure of the IHX is a coaxial structure designed to form a flow path for both the secondary high temperature and low temperature sodium. The coaxial structure of the IHX consists of a central downcomer and riser for the incoming and outgoing intermediate sodium, respectively. The IHX of a pool-type SFR is supported at the upper surface of the reactor head with an IHX support structure that connects the IHX riser cylinder to the reactor head. The reactor head is generally maintained at the low temperature regime, but the riser cylinder is exposed in the elevated temperature region. The resultant complicated temperature distribution of the co-axial structure including the IHX support structure may induce a severe thermal stress distribution. In this study, the structural feasibility of the current upper support structure concept is investigated through a preliminary stress analysis and an alternative design concept to accommodate the IHTS (Intermediate Heat Transport System) piping expansion loads and severe thermal stress is proposed. Through the structural analysis it is found that the alternative design concept is effective in reducing the thermal stress and acquiring structural integrity.

Nonlinear formulation and free vibration of a large-sag extensible catenary riser

  • Punjarat, Ong-art;Chucheepsakul, Somchai
    • Ocean Systems Engineering
    • /
    • 제11권1호
    • /
    • pp.59-81
    • /
    • 2021
  • The nonlinear formulation using the principle of virtual work-energy for free vibration of a large-sag extensible catenary riser in two dimensions is presented in this paper. A support at one end is hinged and the other is a free-sliding roller in the horizontal direction. The catenary riser has a large-sag configuration in the static equilibrium state and is assumed to displace with large amplitude to the motion state. The total virtual work of the catenary riser system involves the virtual strain energy due to bending, the virtual strain energy due to axial deformation, the virtual work done by the effective weight, and the inertia forces. The nonlinear equations of motion for two-dimensional free vibration in the Cartesian coordinate system is developed based on the difference between the Euler's equations in the static state and the displaced state. The linear and nonlinear stiffness matrices of the catenary riser are obtained and the eigenvalue problem is solved using the Galerkin finite element procedure. The natural frequencies and mode shapes are obtained. The results are validated with regard to the reference research addressing the accuracy and efficiency of the proposed nonlinear formulation. The numerical results for free vibration and the effect of the nonlinear behavior for catenary riser are presented.

대형주강 압탕부의 편석거동 고찰 (Investigation of Segregation Behavior in the Riser/Castings Junction of Heavy-section Steel Castings)

  • 김지태;박흥일;김우열;이병우
    • 한국주조공학회지
    • /
    • 제30권4호
    • /
    • pp.130-136
    • /
    • 2010
  • Sulfide segregation behavior, characteristics of solidification microstructure and compositional distribution in the riser/castings junction of heavy-section main bearing support (MBS) steel castings were investigated; Sulfide streaks of A segregation were formed in the transitional region from columnar grain to coarse equiaxed grain and floated with aggregation of the dendritic free crystal. Solute segregation behaviors of elements Si, P and S were V shape negative segregation from the bottom of the castings to upper part of the riser with the reference of vertical center-line of the specimen block. Those of elements C and Mn were V shape negative segregation in the main body and A shape positive segregation in the riser of the casting. Just beneath the pipe shrinkage in the riser segregation ratio of each element was the highest, and that of S was 3.6 times higher, C 3.3 times, P 2.1 times, Si 1.6 times and Mn 1.0 times respectively. [Mn/S] ratio of the specimen block was distributed in the wide range of 20~275.

FPSO Riser 지지구조의 설계최적화에 대한 근사화 기법의 비교 연구 (A Comparative Study of Approximation Techniques on Design Optimization of a FPSO Riser Support Structure)

  • 심천식;송창용
    • 한국전산구조공학회논문집
    • /
    • 제24권5호
    • /
    • pp.543-551
    • /
    • 2011
  • 본 논문에서는 해양작업 상태의 하중조건을 고려한 부유식 원유생산 저장 하역장치에 설치된 라이져 보강구조의 강도설계에 관련하여 다양한 근사화 기법 기반 설계최적화 및 그 성능을 비교하고자 한다. 설계최적화 문제는 하중조건별 구조강도의 제한조건 하에서 중량을 최소화하여 설계변수인 구조 부재치수가 결정되도록 정식화된다. 비교 연구를 위해 사용된 근사화 기법은 반응표면법 기반 순차적 근사최적화(RBSAO), 크리깅 기반 순차적 근사최적화(KBSAO), 그리고 개선된 이동최소자승법(MLSM) 기반 근사최적화 기법인 CF-MLSM와 Post-MLSM이다. RBSAO와 KBSAO의 적용을 위하여 상용프로세스 통합 설계최적화(PIDO) 코드를 사용하였다. 본 연구에 적용한 MLSM 기반 근사최적화 기법들은 제한조건의 가용성을 보장할 수 있도록 새롭게 개발되었다. 다양한 근사화 모델 기반 설계최적화 기법에 의한 결과는 설계 해의 개선 및 수렴속도 등의 수치적 성능을 기준으로 실제 비근사 설계최적화 결과와 비교 검토하였다.

강성 및 컴플라이언트 행오프 하에서의 미연결송유관의 동력학 (Dynamics of disconnected risers under rigid and compliant hang-off)

  • ;윤덕영
    • 한국해양공학회지
    • /
    • 제1권2호
    • /
    • pp.39-51
    • /
    • 1987
  • 석유시추 보호관의 비선형 운동을 시뮬레이트하는 유효한 해법이 non-uniform grid 유한차분법과 implicit time 적분법에 근거하여 제시되었다. 극한 상태에 있는 지지 플랫폼의 상승 가속도에 의해 생기는 보호관의 동적 좌굴형 반응에 관하여 상세히 연구되었고, 이 반응에 미치는 중요 변수가 규명되었다. 운동의 현저한 감소와 이에 따른 응력들이 컴플라이언트 행오프(hang-off)를 적용시킴으로써 얻어졌다.

  • PDF

Three dimensional finite element analysis of 4 inch smart flange on offshore pipeline

  • Moghaddam, Ali Shaghaghi;Mohammadnia, Saeid
    • Ocean Systems Engineering
    • /
    • 제4권4호
    • /
    • pp.279-291
    • /
    • 2014
  • Smart flanges are used for pipeline and riser repair in subsea. In a typical case in the gas export pipeline project, the end cap bolts of a 4inch smart flange were broken during operation, and in turn leakage occurred. This work presents the detail of three dimensional finite element analysis of the smart flange to support the observed end cap bolts failure. From finite element analysis it turns out that in the presence of external bending moment, an uneven contact distribution is present between seal and end cap, which in turn changes the uniform load distribution on bolts and threaten the integrity of bolts. On the other hand, 3D finite element analysis of interaction between pipeline and seabed is presented by means of Abaqus to explore the distribution of bending moment along the pipeline route. It is found that lateral buckling occurs in the pipeline which introduces large bending moment.

콘서트홀 무대반사판의 설계에 관한 연구 (A study on the design of ensemble reflector in a concert hall)

  • 김민애;오양기
    • 한국음향학회지
    • /
    • 제37권5호
    • /
    • pp.356-362
    • /
    • 2018
  • 장방형 평면의 한쪽 끝에 자리잡아 벽체와 천장 등의 1차 혹은 2차반사음을 많이 확보할 수 있는 슈박스 콘서트홀의 무대와는 달리, 객석으로 둘러싸인 무대의 빈야드 콘서트홀은 무대 위의 연주자들이 자신이나 다른 연주자들의 연주음 크기나 화음을 모니터링 할 수 있는 초기반사음이 절대 부족하다. 무대 주변벽에서의 반사음을 기대할 수 있지만 무대라이저와 그 위의 연주자들에 의해 상당부분 가려지기 때문에 그 효과는 극히 제한적이다. 무대반사판(ensemble reflector)은 무대의 상부에 설치하여 연주자들의 모니터링을 가능하게 함으로써 연주음의 앙상블을 향상시키는 데 기여할 수 있는 효과적인 수단이다. 2,000여석 규모의 커다란, 따라서 높은 천장으로 인해 유효한 초기 천장반사음을 확보하기 힘든 대형 빈야드 콘서트홀에서 적절한 위치와 형태와 면적을 갖는 효율적인 무대반사판을 설계하고 무대서포트에 관한 정량적 지표를 토대로 그 효과를 검증하였다.