• Title/Summary/Keyword: Ripple power

Search Result 1,035, Processing Time 0.038 seconds

Design of Multi-winding Inductor for Minimum Inductor Current Ripple Using Optimized Coupling Factor

  • Kang, Taewon;Suh, Yongsug
    • Proceedings of the KIPE Conference
    • /
    • 2016.07a
    • /
    • pp.231-232
    • /
    • 2016
  • This paper investigates the design of multi-winding coupled inductor for minimum inductor current ripple. Based on the general circuit model of coupled inductor together with the operating principles of dc-dc converter, the relationship between the ripple size of inductor current and the coupling factor is derived under the different duty ratio. The optimal coupling factor of n-phase multi-winding coupled inductor which corresponds to a minimum inductor ripple current becomes -(1/n-1), i.e. a complete inverse coupling without leakage inductance, as the duty ratio of steady-state operating point approaches 1/n, 2/n, ${\cdots}$ or (n-1)/n. In an opposite manner, the optimal coupling factor value of zero, i.e. zero mutual inductance, is required when the duty ratio of steady-state operating point approaches either zero or one. Therefore, coupled inductors having optimal coupling factor can minimize the ripple current of inductor and inductor size.

  • PDF

The Analysis of the torque ripple of Traction Motor in the VSI system (전압원 인버터 파형에 따른 견인 전동기의 맥동 토오크 해석)

  • Rhee, Kee-Hong;Yun, Shin-Yong;Kim, Yong;Baek, Su-Hyun;Kang, Ho-Sung
    • Proceedings of the KIEE Conference
    • /
    • 1996.07a
    • /
    • pp.145-147
    • /
    • 1996
  • Traction Motor is being transferred to the squirrel cage induction motor from D.C motor, by the improved power semiconductors like GTO, IGBT, etc. In the Induction Motor, inverter system must be used for delivering variable voltage variable frequency. But, by pulsating in the system the harmonics would be produced, and that cause the torque ripple and enfeeble the dynamic characteristics of the motor. So, to use the inverter system, we should take the torque ripple into consideration. To minimize the torque ripple in the VSI fed Traction Motor, the optimal pulsating was presented in this paper. By using the SPWM(Sinusoidal Pulse Width Modulation) method, feeding the appropriate pulse, we can minimize the torque ripple and improve the transient response.

  • PDF

Suppression Control Method of Torque Ripple for IPMSM Utilizing Repetitive Control and Fourier Transformer

  • Hattori Satomi;Ishida Muneaki;Hori Takamasa
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.341-345
    • /
    • 2001
  • Recently, many examples of practical applications of the motors with reluctance torque, such as IPMSM, RM, etc. are reported. However, the problems of the torque ripple produced by the IPMSM, are also presented. The main reasons of the torque ripple generation are the structural imperfectness of the IPMSM and its control system, such as the cogging torque of the motor, the dead time of inverter, sensors offset, imbalance and non-linearity, and so on. In this paper, authors propose a suppression control method of the torque ripple for IPMSM utilizing the repetitive control with the Fourier transformer and a vibration signal detected by an acceleration sensor attached to the motor frame, considering periodicity of the motor torque ripple. An experimental system to simulate the compliant mechanical frame is constructed, and the effectiveness of the proposed method is confirmed by experimental results.

  • PDF

A utilization of PCB capacitor to reduce the output voltage ripple in Flyback SMPS (PCB 캐패시터를 이용한 플라이백 SMPS 출력 리플 저감 대책)

  • Kim T.G.;Chung G.B.;Lee W.Y.
    • Proceedings of the KIPE Conference
    • /
    • 2003.07a
    • /
    • pp.102-105
    • /
    • 2003
  • The leakage inductance of the High frequency Transformer(HFT) in the flyback topology can be used an inductor of the Low Pass Filter(LPF) to reduce ripple and ripple noise in the output voltage. But, the values of leakage inductance and magnetizing inductance in the HFT are within $\pm20[{\%}]$). And the operating temperature of the HFT increased by the leakage inductance. Therefore, the leakage inductance of the HFT in the flyback topology has minimum and the LPF has non-polarity ceramic capacitor in the output stage. In this paper, the LPF in the flyback topoBogy takes PCB capacitor using double layer of PCB without non-polarity ceramic capacitor. Its experimental results show the reduced ripple noise and the reduced ripple in the output stage.

  • PDF

Reduction of Toque Ripple and Unbalanced Magnetic Force of a Rotatory Axial Two-Phase Transverse Flux Machine by Using Herringbone Teeth (헤링본 치를 이용한 축방향 이상 횡자속형 전동기의 토크 리플과 불평형 자기력 저감)

  • Ahn, Hee-Tae;Jang, Gun-Hee;Chang, Jung-Hwan;Chung, Shi-Uk;Kang, Do-Hyun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.682-688
    • /
    • 2008
  • Transverse flux machine (TFM) has been considered as a promising driving machine especially at the low-speed applications because it has higher power density, torque and efficiency than the conventional electrical motors. However, it has complicated structure, large torque ripple and sometimes unbalanced magnetic force due to its inherent structure. This paper investigates the characteristics of torque ripple and unbalanced magnetic force of a rotatory two-phase TFM due to the teeth geometry by using the 3-dimensional finite element method, and it develops a rotatory two-phase TFM with herringbone teeth to reduce the torque ripple as well as to eliminate the unbalanced magnetic force.

  • PDF

Pressure Ripple Reduction in Hydrostatic Transmissions by Using a Hydraulic Filter (맥동흡수용 유압필터에 의한 유압전동장치의 압력맥동 감쇠)

  • 김도태
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.11 no.3
    • /
    • pp.33-38
    • /
    • 2002
  • This paper deals with pressure ripple attenuation far separated-type Hydrostatic Transmission (HST) consisting ova variable axial piston pump connected in an open loop to a fried displacement axial piston motor. Pressure ripples in HST is major source of vibration which can lead to fatigue failure of components and cause noise. In order to reduce the pressure ripple, an annular tube tripe hydraulic filter is proposed to attenuate pressure ripples with the high frequencies components to achieve better noise reduction in HST. The basic principle of a hydraulic filter is allied to propagation of pressure wave, reflection, absorption in cross section of discontinuity and resonance in the hydraulic pipeline. It is experimentally shown that the hydraulic filter attenuates about 30∼40dB of pressure ripple with high frequencies. These results will assist in modeling and design of noise reduction in hydraulic control systems, and provide a means of designing a quieter HST.

Surface Mounted Permanent Magnet Synchronous Motor Design for Torque Ripple Reduction in EPS (EPS용 표면부착형 영구자석 동기전동기의 토크 리플 저감)

  • Lim, Seung-Bin;Park, Hyun-Jong;Kang, Dong-Woo;Ham, Sang-Hwan;Lee, Ju
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.8
    • /
    • pp.27-31
    • /
    • 2010
  • Torque ripple of the motor used in EPS raises vibration problem on steering system. To solve this problem, this paper proposes a optimum design for torque ripple reduction of Surface-mounted Permanent Magnet Synchronous Motor(SPMSM) in EPS. Through analyis back-EMF using Finite element method as changing the shape of permanent magnet and stator shoe, we presented the method of torque ripple redution.

Optimum Rotor Shaping for Torque Improvement of Double Stator Switched Reluctance Motor

  • Tavakkoli, Mohammadali;Moallem, Mehdi
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.4
    • /
    • pp.1315-1323
    • /
    • 2014
  • Although the power density in Double Stator Switched Reluctance Motor (DSSRM) has been improved, the torque ripple is still very high. So, it is important to reduce the torque ripple for specific applications such as Electric Vehicles (EVs). In This paper, an effective rotor shaping optimization technique for torque ripple reduction of DSSRM is presented. This method leads to the lower torque pulsation without significant reduction in the average torque. The method is based on shape optimization of the rotor using Finite Element Method and Taguchi's optimization method for rotor reshaping for redistribution of the flux so that the phase inductance profile has smoother variation as the rotor poles move into alignment with excited stator poles. To check on new design robustness, mechanical analysis was used to evaluate structural conformity against local electromagnetic forces which cause vibration and deformation. The results show that this shape optimization technique has profound effect on the torque ripple reduction.

A Study of Torque Ripple Minimization and Maximum Torque Control for IPMSM with Non Sinusoidal Back-EMF (비정현적인 역기전력을 가진 IPMSM의 토크리플 저감과 최대토크 제어에 관한 연구)

  • Hong In-Pyo;Lee Sang-Hun;Choi Cheol;Kim Jang-Mok;Kim Cheul-U
    • Proceedings of the KIPE Conference
    • /
    • 2001.07a
    • /
    • pp.142-145
    • /
    • 2001
  • In this paper the electromagnetic torque developed in IPMSM(Interior Permanent Magnet Synchronous Motor) is analyzed. If flux distributions in the motor are not sinusoidal, a sinusoidal current produces important torque ripple. Torque ripple causes vibration and noise of motors. The optimized current waveforms for ripple free is able to be obtained by analysis of Back-EMF and torque equation. The method to find the optimal current is based on numerical predetermination. In this paper proposes current waveform which can eliminate the torque ripple, and the validity is verified through the simulation.

  • PDF

A Minimization Study of Consuming Current and Torque Ripple of Low Voltage BLDC Motor (저전압용 BLDC 전동기의 소비전류 및 토크리플 최소화 연구)

  • Kim, Han-Deul;Shin, Pan Seok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.12
    • /
    • pp.1721-1724
    • /
    • 2017
  • This paper presents a numerical optimization technique to reduce input current and torque ripple of the low voltage BLDC motor using core, coil and switching angle optimization. The optimization technique is employed using the generalized response surface method(RSM) and sampling minimization technique with FEM. A 50W 24V BLDC motor is used to verify the proposed algorithm. As optimizing results, the input current is reduced from 2.46 to 2.11[A], and the input power is reduced from 59 [W] to 51 [W] at the speed of 1000 [rpm]. Also, applied the same optimization algorithm, the torque ripple is reduced about 7.4 %. It is confirmed that the proposed technique is a reasonably useful tool to reduce the consuming current and torque ripple of the low voltage BLDC motor for a compact and efficient design.