• Title/Summary/Keyword: Riparian section

Search Result 15, Processing Time 0.028 seconds

Determining widths of riparian ecosystem zone for water quality and ecosystem conservation - A case study for the Jinwee stream (수질개선과 생태서식환경을 고려한 수변생태구역 너비 결정 방법 - 진위천 적용을 중심으로 -)

  • SONG, Inhong;KIMm, IkJae
    • Journal of Korean Society of Rural Planning
    • /
    • v.24 no.2
    • /
    • pp.21-29
    • /
    • 2018
  • Riparian management has become important as stream water quality as well as riparian ecosystem gain more public attentions. The objective of this study was to determine riparian widths based on the functions of nutrient removal and wildlife habitat protection and to apply for the Jinwee stream area as a preliminary case. Nitrogen and phosphorus filtration efficiencies were considered in water quality aspect, while the habitat radii of amphibian and reptiles were used for wildlife conservation purpose. In addition, observation of endangered species and human impact on wildlife disturbance in riparian area were also taken into account in determining riparian widths. The stream confluence zone was emphasized by doubling the riparian widths as the focal point for wildlife habitat conservation. As the results, three different levels of riparian widths were proposed depending on the major riparian functions and applied to the Jinwee stream section as the case study. The proposed method can be used to determine riparian width in other stream areas based on different functional focus, ie, water quality or riparian conservation purposes.

The Establishment of Ecological Landscape Conservation and Restoration Sections for Urban Stream - Case studies of Jeonjucheon and Samcheon in Jeonju-si - (도시하천의 생태경관 보전 및 복원구역 설정에 관한 연구 - 전주시 전주천과 삼천을 중심으로 -)

  • Lim, Hyun-Jeong;Lee, Myung-Woo;Jeong, Moon-Sun
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.22 no.2
    • /
    • pp.73-92
    • /
    • 2019
  • The purpose of this study is to establish the conservation and restoration areas for sustainable stream management by reflecting the ecological health, cultural characteristics, and the citizens' needs for stream uses. Therefore, we extended spatial ranges of stream evaluation to riparian areas in addition to stream sections. The evaluation indexes are stream naturalness, availability, biota assessment, and riparian characteristics such as land uses and legally protected areas. The grading system was unified with five classes. The spatial evaluation units for stream section are classified as right and left for laterally and 500m for longitudinally. For riparian areas, 30m and 100m of distance from the edge of stream are applied as spatial evaluation units. The six types of stream sections for management are conservation sections(priority/general) and restoration sections(priority/general) for ecological landscape and core and general sections for cultural landscape. The established system for evaluation and designating areas for stream management was applied to Jeonjucheon and Samcheon in Jeonju-si, and the conservation and restoration areas were designated reflecting the characteristics of urban and non-urban areas and left and right of stream sections. The results of this study will provide detailed guidelines for designating stream sections and practical management strategies for sustainable urban stream management.

Analysis of Flow Duration Based on SWAT-K Simulation for Construction of Natural Riparian (자연하안조성을 위한 SWAT-K 모의치 기반 유황 분석)

  • Kim, Nam-Won;Lee, Jeong-Woo;Chung, Il-Moon;Kim, Ji-Tae
    • Journal of Environmental Science International
    • /
    • v.20 no.11
    • /
    • pp.1457-1464
    • /
    • 2011
  • In this study, the method of estimating hydrologic information (water depth, submerged period etc.) on the proper selection of construction point and scale as well as vegetation type suggested for the design of natural riparian rehabilitation structure. Long-term comprehensive watershed model SWAT-K(Korea) was applied to this purpose. Flow duration analysis was conducted to analyze the hydrologic characteristics of Pyungchang watershed at which the 'bangtul' construction method was tested. For this purpose 20 years (1989-2008) rainfall runoff analysis was carried out. Based on the simulated daily streamflow data, flow duration curve was made to analyze the flow characteristics, and the water depth hydrograph was made to analyze the water depth distribution at the cross section. Finally, the information for the selection of proper vegetation according to the submerged period is suggested.

Diagnostic Evaluation on the Riparian Vegetation in the Changwon and Nam Streams for Preparing a Restoration Plan (창원천과 남천의 생태적 복원을 위한 식생 측면의 진단평가)

  • An, Ji Hong;Lim, Chi Hong;Jung, Song Hie;Kim, A Reum;Woo, Dong Min;Lee, Chang Seok
    • Journal of Korean Society on Water Environment
    • /
    • v.32 no.5
    • /
    • pp.475-491
    • /
    • 2016
  • The Changwon and Nam streams that run through the Changwon city were evaluated based on longitudinal and horizontal configurations and vegetation state in order to prepare a restoration plan. Riparian vegetation of the Changwon and Nam streams are normally dominated by herbaceous plants. However, the woody plants, Salix pseudolasiogyne, Rubus parvifolius, Salix koreensis, Robinia pseudoacacia, and Amorpha fruticosa have appeared. Planting to introduce various types of plants for landscape architecture has also been observed. Evaluation of naturalness based on the vegetation state of both Changwon and Nam streams showed very low naturalness of degree 1 or 2, with the exception of a few reaches of the upstream sector. In these few reaches of the upstream sector, Salix koreensis and Salix chaenomeloides showed heights at the subtree level, however, they were located at the position of shrubland close to the waterway. These reaches were, therefore, evaluated as degree 3 rather than degree 4 in naturalness. The result of diagnostic evaluation classified by reach indicated the requirement for active restoration, such as transformation of the channelized stream into a meandering one and a step-type cross section into a pool-type one, introduction of vegetation suitable to the region and site, and creation of an ecological network between the stream and the surrounding terrestrial ecosystems.

Growth Characteristics of Cutting Culms Sectioned at Different Positions from Three Reed Populations (세 갈대 개체군의 절단 부위별 삽목 생장 특성)

  • Hong, Mun-Gi;Kim, Jae Geun
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.15 no.1
    • /
    • pp.53-62
    • /
    • 2012
  • Culm cutting is very effective and convenient method for asexual propagation and even much less destructive than the other ways such as excavation of rhizomes. Despite that culm cutting is such a useful method, only few investigations for raising its efficiency have been carried out. We tried to examine the effect of different geographical populations and cutting sections on the shoot emergence, biomass production and its allocation in terms of cutting efficiency. Culms were sampled from three environmentally distinct wetlands : riparian marsh, salt marsh and montane fen and then they were cut separately into four sections from the bottom to the top part. Both factors of different population and section affected the shoot emergence together. Middle parts on the culm always showed more shoot emergence irrespective of different population. On the other hand, first section from salt marsh and fourth section from the montane fen did not exhibit any shoot emergence. Significant difference in increase of shoot emergence between different sections during investigation period was confirmed only from salt marsh population. Not only different population but also appropriate cutting section should be considered together for better efficiency in cutting of reed culms.

Determination of Floodplain Restoration Area Based on Old Maps and Analysis on Flood Storage Effects of Flood Mitigation Sections (고지도를 활용한 홍수터 복원 구역 선정 및 홍수완충공간의 홍수 저류효과 분석)

  • Dong-jin Lee;Un Ji;Sanghyuk Kim;Hong-Kyu Ahn;Eun-kyung Jang
    • Ecology and Resilient Infrastructure
    • /
    • v.10 no.2
    • /
    • pp.40-49
    • /
    • 2023
  • To reduce the damage of extreme flooding caused by climate change and to create flood mitigation sections in a nature-friendly riparian area, it is necessary to restore the floodplain area by referring to the past floodplain section of the current inland waterfront area before the levee was built. This study proposed a method of selecting a location for floodplain restoration using old maps of the Geum River study section and analyzed the effect of flood level reduction through unsteady flow numerical simulations using the floodplain as a flood mitigation space. As a result of analyzing changes in the river areas using old maps, the river section was estimated to gradually reduce by 27.8% (1,059,380 m2) in 2020 compared to 1919, and it was found to have an effective storage capacity of 2,200,868 m3 when restored to offline storage. The flood level and discharge control effects analyzed based on HEC-RAS unsteady flow simulation were 16 cm and 219.01 m3/s, respectively, in the downstream cross-section. In the numerical simulation in this paper, the flood mitigation space was applied as an offline reservoir. The effect of reducing the flood level may differ if levee retreat/relocation is applied.

Development and Application of a Model for Restoring a Vegetation Belt to Buffer Pollutant Discharge (수질 오염물질 배출저감을 위한 완충식생 복원 모델 개발)

  • An, Ji Hong;Lim, Chi Hong;Lim, Yun Kyung;Nam, Kyeong Bae;Pi, Jung Hun;Moon, Jeong Sook;Bang, Je Yong;Lee, Chang Seok
    • Journal of Korean Society on Water Environment
    • /
    • v.32 no.2
    • /
    • pp.205-215
    • /
    • 2016
  • In order to improve water quality in the Paldang Lake, a riparian vegetation belt, treatment wetland, and artificial floating island were designed for introduction in the upland field, the estuary of tributaries, and the section of water facing mountainous land, respectively. We synthesized vegetation information collected from a reference river and found that herbaceous, shrubby, and tree vegetation zones tended to be dominated by Phragmites japonica, Phalaris arundinacea, etc.; Salix gracilistyla, S. integra, etc.; and S. koreensis, S. subfragilis, and Morus alba, respectively. In our plan, the herbaceous vegetation zone, which is established on floodplains with a high frequency of disturbance, will be left in its natural state. A shrubby vegetation zone will be created by imitating the species composition of the reference river in the ecotone between floodplain and embankment. A tree vegetation zone will be created by imitating species composition on the embankment slope. In the treatment wetland, we plan to create emerged and softwood plant zones by imitating the species composition of the Zizania latifolia community, the Typha orientalis community, the P. communis community, the S. integra community, and the S. koreensis community. The floating island will be created by restoring Z. latifolia and T. orientalis for water purification purposes.

Changes of River Morphology in the Mid-lower Part of Nakdong River Basin after the 4 Large River Project, South Korea (4대강 사업 후 낙동강 중·하류의 하중도와 제외지 지형변화)

  • Im, Ran-Young;Kim, Ji Yoon;Choi, Jong-Yun;Do, Yuno;Joo, Gea-Jae
    • Korean Journal of Ecology and Environment
    • /
    • v.48 no.3
    • /
    • pp.188-194
    • /
    • 2015
  • River channel dredging and riparian development have been influenced morphology and quantity of natural river habitat. We compared distribution of riverside land and alluvial island in the Nakdong River with field survey and remote sensing analysis after the 4 Large River Project in South Korea. We digitized geomorphological elements, includes main channel, riverside land, and alluvial island by using georeferenced aerial photos taken in pre-dredging (2008) and post-dredging (2012) periods. Field survey was followed in 2012 for a ground truth of digitized boundaries and identification of newly constructed wetland types such as pond, channel, branch, and riverine type. We found that during the dredging period, riverside land and alluvial island were lost by 20.2% and 72.7%, respectively. Modification rate of riverside land was higher in the section of river kilometer 50~90, 140~180, and 210~270. Alluvial island had higher change rate in the section of river kilometer 50~70, 190~210, and 270~310. Average change rate for the riverside land and alluvial island was $-1.02{\pm}0.14km^2{\cdot}10km^{-1}$ and $-0.05{\pm}0.05km^2{\cdot}10km^{-1}$, respectively. Channel shaped wetlands (72.5%) constituted large portion of newly constructed wetlands.

Application study of random forest method based on Sentinel-2 imagery for surface cover classification in rivers - A case of Naeseong Stream - (하천 내 지표 피복 분류를 위한 Sentinel-2 영상 기반 랜덤 포레스트 기법의 적용성 연구 - 내성천을 사례로 -)

  • An, Seonggi;Lee, Chanjoo;Kim, Yongmin;Choi, Hun
    • Journal of Korea Water Resources Association
    • /
    • v.57 no.5
    • /
    • pp.321-332
    • /
    • 2024
  • Understanding the status of surface cover in riparian zones is essential for river management and flood disaster prevention. Traditional survey methods rely on expert interpretation of vegetation through vegetation mapping or indices. However, these methods are limited by their ability to accurately reflect dynamically changing river environments. Against this backdrop, this study utilized satellite imagery to apply the Random Forest method to assess the distribution of vegetation in rivers over multiple years, focusing on the Naeseong Stream as a case study. Remote sensing data from Sentinel-2 imagery were combined with ground truth data from the Naeseong Stream surface cover in 2016. The Random Forest machine learning algorithm was used to extract and train 1,000 samples per surface cover from ten predetermined sampling areas, followed by validation. A sensitivity analysis, annual surface cover analysis, and accuracy assessment were conducted to evaluate their applicability. The results showed an accuracy of 85.1% based on the validation data. Sensitivity analysis indicated the highest efficiency in 30 trees, 800 samples, and the downstream river section. Surface cover analysis accurately reflects the actual river environment. The accuracy analysis identified 14.9% boundary and internal errors, with high accuracy observed in six categories, excluding scattered and herbaceous vegetation. Although this study focused on a single river, applying the surface cover classification method to multiple rivers is necessary to obtain more accurate and comprehensive data.

Evaluation of the effects of the river restoration in Hwangji Stream, the upstream reach of the Nakdong River

  • Bong Soon Lim;Jaewon Seol;Chang Seok Lee
    • Journal of Ecology and Environment
    • /
    • v.48 no.1
    • /
    • pp.85-95
    • /
    • 2024
  • Background: In Korea, riparian zones and some floodplains have been converted into agricultural fields and urban areas. However, there are essential for maintaining biodiversity, as they are important ecological spaces. There are also very important spaces for humanity, as they perform various ecosystem services in a changing environment including climate change. Due to the importance of rivers, river restoration projects have been promoted for a long time, but their achievement has been insignificant. Development should be pursued by thoroughly evaluating the success of the restoration project. Ecological restoration is to accelerate succession, a process that a disturbed ecosystem recovers itself, with human assistance. Ecological restoration can be a test bed for testing ecological theories in the field. In this respect, ecological restoration should go beyond a 'simple landscaping exercise' and apply ecological models and theories in restoration practice. Results: The cross-section of the restored stream is far from natural rivers due to its steep slope and artificial material. The vegetation profiles of the restored streams did not reflect the flooding regime of the river. The species composition of the vegetation in the restored stream showed a significant difference from that of the reference stream, and was also different from that of an unrestored urban stream. Although species richness was high and the proportion of exotic species was low in the restored stream, the effect was offset by the high proportion of gardening and landscaping plants or obligate terrestrial plants. Conclusions: Based on both the morphological and ecological characteristics of the river, the restoration effect in the restored stream was evaluated to be very low. In order to solve the problems, a systematic adaptive management plan is urgently required. Furthermore, it is necessary to institutionalize the evaluation of restoration effects for the development of river restoration projects in the future.