• Title/Summary/Keyword: Rigid joints

Search Result 185, Processing Time 0.025 seconds

A Finite Element Analysis for the Concrete Highway Pavements with Skew Joints (경사가로줄눈을 가진 콘크리트포장구조의 유한요소법에 의한 해석)

  • Jo, Byung Wan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.8 no.4
    • /
    • pp.11-21
    • /
    • 1988
  • In twentieth century, a rigid pavement composed of a series of thin Portland Cement Concrete has been accepted due to the desirable structural strength of concrete, durability and economy. However, despite of precise design and construction of concrete highway pavements, some of concrete pavements (example : Interstate-l0 and 75 in U.S.A, 88 Olympic express highway and Jung-bu express highway in Korea) has already shown severe signs of longitudinal and transverse cracking, faulting, and pumping before the end of their intended service life. This highlights the need for better understanding of concrete pavement behavior using structural analysis program. For these reasons, this research was performed to study an analytical behavior of concrete pavements, especially for the effects of skewed joints on concrete pavements. Subsequently, this research should give better understanding of concrete pavement behavior to the highway engineers and provide effective remedies to the concrete highway pavements.

  • PDF

Fatigue Capacity Evaluation of the Girder-Abutment Connection for the Steel-Concrete Composite Rigid-Frame Bridge Integrated with PS Bar (PS 강봉으로 일체화된 강합성 라멘교의 거더-교대 접합부에 대한 피로 성능 평가)

  • Ahn, Young-Soo;Oh, Min-Ho;Chung, Jee-Seung;Lee, Sang-Yoon
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.3
    • /
    • pp.249-258
    • /
    • 2012
  • Integral and rigid frame bridges have advantages in bridge maintenance and structural efficiency by eliminating expansion joints and bridge supports. However, the detail of typical girder-abutment connection is rather complex and increases construction cost depending on construction detail. For the purpose of compensating disadvantages such as complexity and additional cost, a new type of bridge is proposed in this study, which improves the efficiency of construction by simplifying the construction detail of girder-abutment connection. The proposed bridge has the connection detail of steel girder and abutment integrated by prestressed PS bar installed in the connection. In this study, finite element analysis and fatigue load test are conducted to evaluate the fatigue capacity of the proposed girder-abutment connection. The results of the finite element analysis revealed that the possibility of the fatigue damage in the girder-abutment connection is very low. The results of the fatigue load test verified that the integrity of the girder and abutment connection is maintained after 2,000,000 cycles of fatigue loading.

Effect of the Member Joint on Structural Performance of an Arch-type Multi-span Greenhouse: A Full-scale Experimental and Numerical Study (부재 접합부가 아치형 연동온실의 구조 성능에 미치는 영향: 실대형 실험적 및 해석적 연구)

  • Choi, Man-kwon;Ryu, Hee-ryong;Cho, Myeong-whan;Yu, In-ho
    • Journal of Bio-Environment Control
    • /
    • v.26 no.4
    • /
    • pp.402-410
    • /
    • 2017
  • The effect of the steel pipe member joint on the design performance of a plastic multi-span greenhouse was analysed through the comparing full-scale experiment and numerical analysis. The design performance of the greenhouse is generally evaluated through numerical analysis, but it is rare to consider the characteristics of the connections or joints of the members. In this study, the effect of the column-gutter beam-rafter-wind break wall joint on the design performance of the whole structure of a plastic multi-span greenhouse was analysed. The numerical results with assuming that the member joint are rigid condition were compared with the full-scale load test results using member joints used in the field. The stiffness of the entire structure was compared using the load-displacement relationship and the change of the load sharing ratio that the main members such as column, rafters, and wind break wall was analysed. The results of the load test were about 40% larger than the numerical result and the member stress was more than twice as large as those of the loaded columns. In order to increase the reliability of the design performance of the greenhouse, it is necessary to develop a numerical analysis model which can consider the characteristics of various joints.

Behaviour of open beam-to-tubular column angle connections under combined loading conditions

  • Liu, Yanzhi;Malaga-Chuquitaype, Christian;Elghazouli, Ahmed Y.
    • Steel and Composite Structures
    • /
    • v.16 no.2
    • /
    • pp.157-185
    • /
    • 2014
  • This paper examines the behaviour of two types of practical open beam-to-tubular column connection details subjected to combined moment, axial and/or shear loads. Detailed continuum finite element models are developed and validated against available experimental results, and extended to deal with flexural, axial and shear load interactions. A numerical investigation is then carried out on the behaviour of selected connections with different stiffness and strength characteristics under various load combination scenarios. The influence of applied levels of axial tensile or compressive loads on the bending stiffness and capacity is examined and discussed. Additionally, the interaction effects between shear forces and co-existing bending and axial loads are examined and shown to be comparatively insignificant in terms of stiffness and capacity in most cases. It is also shown that the range of connections considered in this paper can provide rotational ductility levels in excess of those required under typical design scenarios. Based on these findings, a simplified component-based representation is proposed and described, and its ability to represent the connection response under combined loading is verified using results from detailed numerical simulations.

Trend of Soft Wearable Robotic Hand (유연한 착용형 손 로봇 기술 동향)

  • In, Hyunki;Jeong, Useok;Kang, Brian Byunghyun;Lee, Haemin;Koo, Inwook;Cho, Kyu-Jin
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.6
    • /
    • pp.531-537
    • /
    • 2015
  • Hand function is one of the essential functions required to perform the activities of daily living, and wearable robots that assist or recover hand functions have been consistently developed. Previously, wearable robots commonly employed conventional robotic technology such as linkage which consists of rigid links and pin joints. Recently, as the interest in soft robotics has increased, many attempts to develop a wearable robot with a soft structure have been made and are in progress in order to reduce size and weight. This paper presents the concept of a soft wearable robot composed of a soft structure by comparing it with conventional wearable robots. After that, currently developed soft wearable robots and related issues are introduced.

Study of the Interaction between Tracked Vehicle and Terrain (궤도차량과 토양의 상호작용에 대한 연구)

  • Park, Cheon-Seo;Lee, Seung-Jong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.2
    • /
    • pp.140-150
    • /
    • 2002
  • The planar tracked vehicle model used in this investigation consists of two kinematically decoupled subsystems, i.e., the chassis subsystem and the track subsystem. The chassis subsystem includes the chassis frame, sprocket, idler and rollers, while the track subsystem is represented as a closed kinematic chain consisting of rigid links interconnected by revolute joints. In this study, the recursive kinematic and dynamic formulation of the tracked vehicle is used to find the vertical terce and the distance of an arbitrary track moved in the driving direction along the track. These distances and vertical forces obtained are used to get the deformation and sinkage of a terrain. The FEM(Finite Element Method) is adopted to analyze the interaction between tracked vehicle and terrain. The terrain is represented by a system of elements wish specified constitutive relationships and considered as a piecewise linear elastic, plastic and isotropic material. When the tracked vehicle is moving with different speeds on the terrain, the elastic and plastic deformations and the maximum sinkage for the four different types of isotropic soils are simulated.

Computer Simulation of Pedestrian Collision Trajectory for Various Velocities (컴퓨터 시뮬레이션을 이용한 보행자 충돌 선회특성에 관한 연구)

  • 김종혁;유장석;박경진;손봉수;장명순;홍을표
    • Journal of Korean Society of Transportation
    • /
    • v.20 no.2
    • /
    • pp.81-92
    • /
    • 2002
  • An automobile crash with a pedestrian generates a trajectory which is crucial to identify the cause of the crash. Previous researches have been carried out for pedestrian movement using simple explicit formulae. The formulae are derived from elementary physics. Therefore, they could not sufficiently include variables of a vehicle and a pedestrian. To overcome such a limitation, a simulation is utilized for the pedestrian behavior in crash environment. A dynamic software called MADYMO is utilized for the simulation. A simulation model is established. The automobile body and a dummy are modeled with rigid bodies, joints and springs. The simulation results are compared with those from explicit formulae. It is found that the explicit formulae did not fit to pedestrian conditions. Simulations are performed for various velocities of automobiles. Results are discussed for the usage of the simulation.

Optimization of front Bump Steer for Improving Vehicle Handling Performances (차량의 조종 안정성 향상을 위한 전륜 범프 스터어 최적화)

  • 서권희;이윤기;박래석;박상서;윤희석
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.2
    • /
    • pp.80-88
    • /
    • 2000
  • This paper presents a method to optimize the bump steer characteristics (the change of toe angle with vertical wheel travel) with respect to hard points in the double wishbone front suspension of the four-wheel-drive vehicle using the design of experiment, multibody dynamics simulation, and optimum design program. Front and rear suspensions are modeled as the interconnection of rigid bodies by kinematic joints and force elements using DADS. The design variables with respect to the kinematic characteristics are obtained through the experimental design sensitivity analysis. An object function is defined as the area of absolute differences between the desired and experimental toe angle. By the design of experiment and regression analysis, the regression model function of bump steer characteristics is extracted. The design variables that make the toe angle optimized are selected using the optimum design program DOT. The lane change simulations and tests of the full vehicle models are implemented to evaluate the improvement of vehicle handling performances by the optimization of front bump steer characteristics. The results of the lane change simulations show that the vehicle with optimized bump steer has the weaker understeer tendency than the vehicle with initial bump steer.

  • PDF

A Study on Slipping Phenomenon in a Media Transport System (급지 장치에서의 미끄러짐 현상에 대한 연구)

  • 유재관;이순걸;임성수;김시은
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.681-685
    • /
    • 2004
  • A media-feeding (or media-transport) system is a key component in daily consumer systems such as printers, copiers and ATM's. The role of the media-transport system is to feed a medium, which is usually in the form of a thin film, to the main process in a uniform and repeatable manner. Even small slippage between the media and the feeding rollers could significantly degrade the performance of the entire system. The slippage between the medium and the feeding rollers is determined by many parameters which include the friction coefficient between the feeding rollers and the medium material, the angular velocity of the feeding rollers, and the normal force applied by feeding rollers on the medium. This paper investigates the effect of the normal force and the angular velocity of feeding rollers on the slippage of the medium. Authors have constructed a test bed for experiments, which consists of a feeding module and various measuring devices. Using regular paper as media being fed, the authors experimentally measured the slippage of the medium under various normal forces and angular velocities of driving feeding roller. Also the authors developed a novel two-dimensional simulation model for the media-transport system. The paper medium is modeled as a set of multiple rigid bodies interconnected by revolute joints and rotational springs and dampers. Simulations were executed using a multi-body dynamic analysis tool called RecurDy $n^{ⓡ}$. The slippage obtained by the simulation is compared to experimental results.ults.

  • PDF

Adjusting Equation Method (or Relaxation Equation Method) and its Application to the Influence Line Analysis of Continuous Beams (조정방정식법(調整方程式法)(혹은 이완방정식법(弛緩方程式法))과 연속량(連續梁)에의 응용(應用))

  • Cho, Hyun Yung;Kim, Mi Ock
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.3
    • /
    • pp.487-493
    • /
    • 1994
  • Moment distribution procedure in the elastic analysis of rigid frames can be easily expressed with the adjusting moment equations(or relaxation equations) by using the concept of total adjusting moment at each joint after infinite cycles of moment distribution. Adjusting moment equations are a set of simultaneous equations from which the total adjusting moments at each joints after infinite cycles of physical relaxation can be determined. The form of simultaneous equations is a kind of relaxation equations and can be easily solved by the hand calculators. A unique and simplified procedure for the influence line analysis of a continuous beam is presented as an application of the method.

  • PDF