• Title/Summary/Keyword: Rigid Part

Search Result 264, Processing Time 0.031 seconds

A study on experiment from the Stair Joints Constructed with PC system part of it using the HI-FORM DECK (HI-FORM DECK를 이용한 부분 PC 계단 접합부의 접합방식에 따른 실험적 연구)

  • Chang, Kug-Kwan;Lee, Eun-Jin;Jin, Byung-Chang;Kang, Woo-Joo;Han, Tae-Kyung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.9-12
    • /
    • 2008
  • The semi-rigid joint is the shape of middle that can supplement the defect of pin joints and accept the good point of rigid joints. Recently, a study on the pin joints is activated in the country, but because the study on semi-rigid joints is not many, this study tried to prove with producing test model of three shape. The test models are rigid joint HI-R, semi-rigid joint HI-S, pin joint HI-P. As a result of the test, respectively HI-R, HI-S, HI-P appeared shear failure of joint, flexure failure of the top fixing, flexure failure of the lower part slipping stair slab, and the maximum strength is measured to 51.74, 51.4, 24.63kN, the stiffness is appeared 1.58, 1.19, 0.37 respectively, The yield strength is respectively kept 44.5, 47.3, 24kN, and ductility ratio is appeared to 3.31, 2.32, 1.54, when is based on KBC code, sag of the acting service load is appeared that HI-P model is over the standard. When is based on distribution of bars strain ratio, HI-S seems similar behavior incipiently, but after the yield, the semi-rigid joint was able to be judged better than pin joint because of the stress allotment of joint internal elements.

  • PDF

Experiments for measuring parts deformation and misalignments using a visual sensor (시각센서를 이용한 부품변형 및 상대오차 측정 실험)

  • 김진영;조형석;김성권
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1395-1398
    • /
    • 1997
  • Flexible parts comparing with rigid parts can be deformed by contact force during assembly. for successful assembly, information about their deformation as well as possible misalignment between mating parts is essential. Howecer, because of the complex relationship between parts deformation and reaction forces, it is difficult to acquire all required information from the reaction forces alone. In this paper, we measure parts deformation and misalignments by using the visual sensing system presented for flexible parts assembly. Experimental results show that the system can be effectively used for detecting parts deformation and misalignments between mating parts.

  • PDF

A Simple Learning Variable Structure Control Law for Rigid Robot Manipulators

  • Choi, Han-Ho;Kuc, Tae-Yong;Lee, Dong-Hun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.354-359
    • /
    • 2003
  • In this paper, we consider the problem of designing a simple learning variable structure system for repeatable tracking control of robot manipulators. We combine a variable structure control law as the robust part for stabilization and a feedforward learning law as the intelligent part for nonlinearity compensation. We show that the tracking error asymptotically converges to zero. Finally, we give computer simulation results in order to show the effectiveness of our method.

  • PDF

An experimental study of a circular cylinder's two-degree-of-freedom motion induced by vortex

  • Kim, Shin-Woong;Lee, Seung-Jae;Park, Cheol-Young;Kang, Donghoon
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.8 no.4
    • /
    • pp.330-343
    • /
    • 2016
  • This paper presents results of an experimental investigation of vortex-induced vibration (VIV) of a flexibly mounted and rigid cylinder with two-degrees-of-freedom with respect to varying ratio of in-line natural frequency to cross-flow natural frequency, $f^*$, at a fixed low mass ratio. Combined in-line and cross-flow motion was observed in a sub-critical Reynolds number range. Three-dimensional displacement meter and tension meter were used to measure dynamic responses of the model. To validate the results and the experiment system, x and y response amplitudes and ratio of oscillation frequency to cross-flow natural frequency were compared with other experimental results. It has been found that the higher harmonics, such as third and more vibration components, can occur on a certain part of steel catenary riser under a condition of dual resonance mode. In the present work, however, due to the limitation of a size of circulating water channel, the whole test of a whole configuration of the riser at an adequate scale for VIV phenomenon was not able to be conducted. Instead, we have modeled a rigid cylinder and assumed that the cylinder is a part of steel catenary riser where the higher harmonic motions could occur. Through the experiment, we have found that even though the cylinder was assumed to be rigid, the occurrence of the higher harmonic motions was observed in a small reduced velocity ($V_r$) range, where the influence of the in-line response is relatively large. The transition of the vortex shedding mode from one to another was examined by using time history of x and y directional displacement over all experimental cases. We also observed the influence of in-line restoring force power spectral density with $f^*$.

A Study on Dynamic Characteristics of Reciprocating Compressors (왕복동 압축기의 동특성 분석 및 진동개선에 관한 연구)

  • 고병승;황원걸;안기원;박성우;서문희
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.478-485
    • /
    • 2003
  • Today, although there have been high technical developments of a compressor in the respect of its capacity, it has been so hard to develop in the respect of vibration and noise because mechanical structure of it has originally numerous vibration and noise. However, if we can grasp the point of systematic phenomena of vibration and noise through the understanding of dynamic characteristics in mechanical equipment, it may be possible to consider countermeasures. In this study about a reciprocal compressor, the part of its machinery is modeled as rigid body, and the part of its spring is modeled as flexible body, and then they are analyzed by DADS. Each rigid body and spring are connected with joint torque of a motor is applied to shaft, and pressure is applied to a piston so that a compressor can be revolved. Based on this modeling, influence of a compressor's vibration is analyzed through changes of offset, connecting rod and crank radius In the case of weight balance, it I produced after re-design, and then changes of vibration of a compressor's inside are checked through experiments. These analysis data may help set measures of reducing vibration of a reciprocal compressor.

  • PDF

Defect-free 4-node flat shell element: NMS-4F element

  • Choi, Chang-Koon;Lee, Phill-Seung;Park, Yong-Myung
    • Structural Engineering and Mechanics
    • /
    • v.8 no.2
    • /
    • pp.207-231
    • /
    • 1999
  • A versatile 4-node shell element which is useful for the analysis of arbitrary shell structures is presented. The element is developed by flat shell approach, i.e., by combining a membrane element with a Mindlin plate element. The proposed element has six degrees of freedom per node and permits an easy connection to other types of finite elements. In the plate bending part, an improved Mindlin plate has been established by the combined use of the addition of non-conforming displacement modes (N) and the substitute shear strain fields (S). In the membrane part, the nonconforming displacement modes are also added to the displacement fields to improve the behavior of membrane element with drilling degrees of freedom and the modified numerical integration (M) is used to overcome the membrane locking problem. Thus the element is designated as NMS-4F. The rigid link correction technique is adopted to consider the effect of out-of-plane warping. The shell element proposed herein passes the patch tests, does not show any spurious mechanism and does not produce shear and membrane locking phenomena. It is shown that the element produces reliable solutions even for the distorted meshes through the analysis of benchmark problems.

Sensorless Vibratory Orienting of Small Polygonal Parts (소형 다각형 부품의 비센서 진동 정렬)

  • Han, In-Hwan
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.11
    • /
    • pp.1111-1118
    • /
    • 2006
  • This paper covers topics related to the investigations for the problem of sensorless vibratory orienting of polygonal parts with high probability through dynamic simulation. The author's program for mechanical systems with changing topologies was experimentally validated and was used as a simulation and design tool for motion behaviors of the vibratory parts-orienting system in the dynamic environment. A flat level vibrating bar is proposed as a means of orienting parts. Dynamic manipulation, in which a part is repeatedly caught and tossed by the bar without sensing, forms the fundamental manipulation strategy. This paper presents how to plan vibratory manipulation strategies that can orient a small rigid polygonal part using interaction between the part and the vibrating bar without requiring sensing. The planned motion strategies have been experimentally validated to show how the dynamic simulation can be used to find favorable vibration parameters for a given part without knowledge of their initial orientations.

Coupled Thermo-Viscoplastic Three Dimensional Finite Element Anaysis of Compression Molding of Sheet Molding Compound (열유동을 고려한 SMC 압축성형공정의 3차원 유한요소 해석)

  • Kim, Soo-Young;Im, Yong-Taek
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.2
    • /
    • pp.488-499
    • /
    • 1996
  • SMC(Sheet molding compound) is a thermosetting material reinforced with chopped fiberglass. The compression molding of SMC was analyzed based on a rigid thermo-viscoplastic approach using a three dimensional finite element program coupled with temperatures. Only the temperature analysis part was tested in this paper by solving one-dimensional heat transfer problem and comparing with the exact solutions available in the literature. Based on this comparison the program was proved to be valid and was further applied in solving compression molding of SMC between flat dies. To investigate the usefulness of a rigid thermo-viscoplastic approach in the compression molding analysis of SMC charge, compression of rectangular shaped SMC charge at plane strain and three dimensionalde formation condition was analyzed under the same condition as given in the literature. From this comparison it was found out that the rigid thermo-viscoplastic approach was useful in analyzing SMC compression molding between flat dies.

The Characteristics of Elasto-Plastic Behaviour for the Latticed Dome Structures (래티스 돔 구조물의 탄소성 거동 특성에 관한 연구)

  • Park, Chul-Ho;Han, Sang-Eul;Yang, Jea-Guen
    • 한국공간정보시스템학회:학술대회논문집
    • /
    • 2004.05a
    • /
    • pp.53-62
    • /
    • 2004
  • A single layer latticed dome is one of the most efficient structures because of its low specivic gravity. For easily analyzing of a single layer latticed dome, joint system is assumed to be pin or rigid joint. However, its joint uses ball whose system has intermediate properties of pin and rigid joint. Therefore this study has a grasp of bending rigidity, stress and mechanical properties through experimental and analyzing method of the bolt inserted ball joint. To analyze the stress of bolt and sleeve, this study uses through 3D elastic contact and cubic element, and then the ball and the bolt are perfectly connected for easily analyzing Compared experimental results to F.E.M, each specimen has an error of less than 12 percent. In the results of stress distribution through F.E.M, stress occurs from bottom of bolt to top of sleeve, and most of tension appears on the bolt, also compression occurs from upper parts of the bolt to the sleeve. The assumption of bending stiffness in ball joint is well known that bolt resists only tension and upper sleeve resiss compression. The results of experiment and analysis have $7{\sim}56%$ error, assuring that upper part of bolt occurs of partial compression. In the result of modified assumption have $4{\sim}20%$ error.

  • PDF

Smart Phone Robot Made of Smart Soft Composite (SSC)

  • Wang, Wei;Rodrigue, Hugo;Lee, Jang-Yeob;Han, Min-Woo;Ahn, Sung-Hoon
    • Composites Research
    • /
    • v.28 no.2
    • /
    • pp.52-57
    • /
    • 2015
  • Soft morphing robotics making use of smart material and based on biomimetic principles are capable of continuous locomotion in harmony with its environment. Since these robots do not use traditional mechanical components, they can be built to be light weight and capable of a diverse range of locomotion. This paper illustrates a flexible smart phone robot made of smart soft composite (SSC) with inchworm-like locomotion capable of two-way linear motion. Since rigid components are embedded within the robot, bending actuators with embedded rigid segments were investigated in order to obtain the maximum bending curvature. To verify the results, a simple mechanical model of this actuator was built and compared with experimental data. After that, the flexible robot was implemented as part of a smart phone robot where the rigid components of the phone were embedded within the matrix. Then, experiments were conducted to test the smart phone robot actuation force under different deflections to verify its load carrying capability. After that, the communication between the smart phone and robot controller was implemented and a corresponding phone application was developed. The locomotion of the smart phone robot actuated through an independent controller was also tested.