• Title/Summary/Keyword: Rigid Body Model

Search Result 347, Processing Time 0.025 seconds

Design of Connecting Part of Linear Compressor to Reduce the Vibration level of 60Hz (선형 압축기의 60Hz 진동저감을 위한 연결부 특성의 설계변경 해석)

  • Jeon, Soo-Hong;Jeong, Weui-Bong;Won, Seong-Gyu;Lee, Hyo-Jae
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.1360-1365
    • /
    • 2007
  • A linear compressor used in a refrigerator has higher energy efficiency than other compressors. On the other hand, its vibration level has still been much severe. Changing the characteristics of connecting parts may reduce the vibration level of linear compressor. The piston, body and shell are assumed to be rigid. These rigid bodies are connected by coil springs and flexible loop pipe. This paper derived the mathematical model by combining the equation of motion of rigid parts and flexible parts. The variation of vibration level according to the change of connecting parts was investigated.

  • PDF

A Musculoskeletal Model of a Human Lower Extremity and Estimation of Muscle Forces while Rising from a Seated Position (인체 하지부 근골격계 모델 및 의자에서 일어서는 동작 시 근력 예측)

  • Jo, Young-Nam;Yoo, Hong-Hee
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.6
    • /
    • pp.502-508
    • /
    • 2012
  • An analytical model for a human body is important to predict muscle and joint forces. Because it is difficult to estimate muscle or joint forces from a human body, the objective of this study is the development of a reliable analytical model for a human body to evaluate the lower extremity muscle and joint forces. The musculoskeletal system of the human lower extremity is modeled as a multibody system employing the Hill-type muscle model. Muscle forces are determined to minimize energy consumption, and we assume that motion is constrained in the sagittal plane. Muscle forces are calculated through an equilibrium analysis while rising from a seated position. The musculoskeletal model consists of four segments. Each segment is a rigid body and connected by frictionless revolute joints. Muscles of the lower extremity are simplified to seven muscles with those that are not related to the sagittal plane motion are ignored. Muscles that play a similar role are combined together. The results of the present study are compared with experimental results to validate the lower extremity model and the assumptions of the present study.

A biomechanical model of lower extremity for seated operators (착좌시 하지 동작의 생체역학적 모델)

  • 황규성;이동춘;최재호
    • Journal of the Ergonomics Society of Korea
    • /
    • v.11 no.1
    • /
    • pp.81-92
    • /
    • 1992
  • A two-dimensional static biochemical model of lower extremity in the seated posture was developed to assess muscular activities of lower extremity required for a variety of foot pedal operations. We found that the double linear optimization method that has been used for modelling articulated body segments does no predict the forces generated by biarticular muscles reasonably, so the revised double linear optimization scheme was used to consider the synergistic effects of biarticular muscles in our model, assuming that the muscle forces are distributed proportionally based on their physiological cross sectional area. The model incorporated three rigid body se- gments with six muscles to represnet lower extremity. For the model validation, three male subjects performed the experiments in which EMG activities of six lower extremity muscles were measured. Predicted muscle forces were compare with the corresponding EMG amplitudes and it showed no statistical difference. The model being developed can be used to design and assess pedal and foot-related tool design.

  • PDF

Near-resonant attitude motion analysis of a spinning satellite via multiple scales method

  • Kang, Ja-Young
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1994.10a
    • /
    • pp.213-217
    • /
    • 1994
  • The attitude stability of a satellite in spin-stabilized injection mode which contains a liquid pool is investigated. The satellite model for investigation is a two-body system consisting of a the main body, which is symmetric and rigid, representing the spacecraft, and a spherical pendulum, representing the liquid pool. Assuming that both spacecraft and pendulum are in states of steady spin about the symmetry axis of the spacecraft, the coupled nonlinear equations of motion for the system are simplified. In this paper, by using the multiple scales method, the possible resonance conditions in terms of the system parameters are determined and the corresponding near-resonant solutions are derived.

  • PDF

Lumped Parameter Model for the Nonlinear Seismic Analysis of the Coupled Dam-Reservior-Soil System (댐-호소-지반 계의 비선형 지진응답해석을 위한 집중변수모델)

  • 김재관
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1999.04a
    • /
    • pp.267-274
    • /
    • 1999
  • Since the seismic response of dams can be strongly influenced by the dam-reservior interaction in needs to be taken into account in the seismic design of dams. In general a substructure method is employed to solve the dam-reservoir interaction problem in which the dam body is modeled with finite elements and the infinite region of a reservoir using a transmitting boundary. When the water is modeled as a compressible fluid the equation is formulated in frequency domain. But nonlinear behavior of dam body cannot be studied easily in the frequency domain method. In this study time domain formulation of the dam-reservoir-soil interaction is proposed based onthe lumped parameter modeling of the reservoir region, The frequency dependent dynamic-stiffness coefficients of the reservoir are converted into frequency independent lumped-parameters such as masses dampers and springs. The soil-structure interactionis modeled using lumped parameters in similar way. the ground is assumed as a visco-elastic stratum on the rigid bedrock. The dynamic stiffnesses of the rigid surface foundation are calculated using the hyperelement method and are converted into lumped parameters. The application example demonstrated that the lumped parameter model gives almost identical results with the frequency domain formulation.

  • PDF

A study on the 3Yr. old child human model for crashworthiness simulation (충돌안전도 해석을 위한 유아 인체모델 개발에 관한 연구)

  • Kim, Heon-Young;Kim, Sang-Bum
    • Journal of Industrial Technology
    • /
    • v.22 no.B
    • /
    • pp.45-50
    • /
    • 2002
  • Airbag systems have improved the occupant safety in reducing the injuries of driver and passenger during collisions. They have occasionally caused fatalities; especially to small occupant and children. Recent airbag related fatalities of children have raised serious concerns on how to evaluate the safety of children in various crash environments. This paper present the development of the 3-year-old human model. Child human model is composed of skin, skeleton and joints. The positions of joint and mass properties of body segments are calculated from ARB(Ariticulated Rigid Body) program GEBOD. To verify the developed human model, ROM simulation and OOP simulations are conducted.

  • PDF

Development of Powertrain Model for Vehicle Dynamic Analysis Program, AutoDyn7 (차량동역학 해석 프로그램 AutoDyn7의 동력전달장치 모델)

  • 손정현;유완석;김두현
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.2
    • /
    • pp.185-191
    • /
    • 2001
  • In many papers, the powertrain system generally has been madeled as one-dimensional torque model. One-dimensional powertrain model may calculate the torque correctly but it does not consider the non-rotational degrees-of-freedom of the powertrain components and the interaction of these degrees-of-freedom with the vehicle body frame and suspension. To consider the non-rotational degrees of freedom, the differential is modeled as a three-dimensional rigid body in this paper. A constant velocity joint is newly formulated and a relative constraint is also formulated to model the motion transfer due to gear ratio of the differential. Implementing the proposed powertrain system in the multibody model, more detail dynamic responses can be obtained. Obtained outputs such as reaction torques on the constant velocity joint and reaction forces on the rack can be useful data in the design of a powertrain.

  • PDF

비선형 최적화기법을 이용한 하지근력 예측 인체역학 모형

  • 황규성;정의승;이동춘
    • Proceedings of the ESK Conference
    • /
    • 1994.04a
    • /
    • pp.124-135
    • /
    • 1994
  • A biomechanical model of lower extremity in seated postures was developed to assess muscular activities of lower extremity involved in a variety of foot pedal operations. It is found that nonlinear optimization method which has been used for modeling the articulated body segments does not predict the forces generated from biarticular muscles reasonably, so the revised nonlinear optimization scheme was employed to consider the synergistic effects of biarticular muscles in the model, assuming that the muscle forces are distributed proportionally based on their physiological cross sectional area and moment arm. The model incorporated four rigid body segments with the nine muscles to represent lower extreimity. For the model valida- tion, three male subjects performed the experiments in which EMG activities of the nine lower extremity muscles were measured. Predicted muscle forces were compared with the corresponding EMG amplitudes and it showed no statistical difference. The developed model can be used to design and to assess the pedals and foot-related equipments design.

  • PDF

Vision-based Kinematic Modeling of a Worm's Posture (시각기반 웜 자세의 기구학적 모형화)

  • Do, Yongtae;Tan, Kok Kiong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.3
    • /
    • pp.250-256
    • /
    • 2015
  • We present a novel method to model the body posture of a worm for vision-based automatic monitoring and analysis. The worm considered in this study is a Caenorhabditis elegans (C. elegans), which is popularly used for research in biological science and engineering. We model the posture by an open chain of a few curved or rigid line segments, in contrast to previously published approaches wherein a large number of small rigid elements are connected for the modeling. Each link segment is represented by only two parameters: an arc angle and an arc length for a curved segment, or an orientation angle and a link length for a straight line segment. Links in the proposed method can be readily related using the Denavit-Hartenberg convention due to similarities to the kinematics of an articulated manipulator. Our method was tested with real worm images, and accurate results were obtained.

Development of Vibration Analysis Software, PFADS-R3 using Power Flow Analysis (파워흐름해석법을 이용한 진동해석 소프트웨어, PFADS-R3 개발)

  • 홍석윤;서성훈;박영호;길현권
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.824-830
    • /
    • 2003
  • The Power Flow Finite Element Method(PFFEM) offers very promising results in predicting the vibration responses of system structures, and the first PFFEM software, PFADS has been developed in Seoul National University for the vibration predictions and analysis of coupled system structures in medium-to-high frequency ranges. PFFEM is numerical method which solves energy governing equation using finite element technique for complicated structures where the exact solutions are not available. Through the upgrades, the current version PFADS R3 could cover the general beam and plate structures including various kinds of beam-plate rigid joints, spring-damper connection and rigid body connection within beam and plate in addition. This software is composed of three parts; translator, model converter and solver. The translator makes its own FE-model from bulk data of commercial FE software, and the model converter is used to convert FE-model to PFFE-model automatically. The solver calculates vibrational energy density and intensity for PFFE-model by solving global matrix equations of PFFEM. For the applications of PFADS R3, two vehicle models and a container model are examined with respect to major parameters, and reliable results are obtained.

  • PDF