• Title/Summary/Keyword: Rietveld analysis

Search Result 84, Processing Time 0.037 seconds

Rietveld Refinement of Oxysulfide $LiAl_{0.24}Mn_{1.76}O_{4-y}S_y (y=0, 0.02)$ Spinel Materials

  • Park, Hyun-Min;Y.K Cho;Sun, Yang-Kook
    • Korean Journal of Crystallography
    • /
    • v.14 no.2
    • /
    • pp.110-114
    • /
    • 2003
  • LiAl/sub 0.24/Mn/sub 1.76/O/sub 4-y/S/sub y/ (y=0, 0.02) were synthesized by the sol-gel method. Both structures were refined by Rietveld method, its structure refined as a cubic spinel, space group Fd-3m, a=8.17937(30) Å and 8.18331(19) Å respectively. Though it has been made a charge/discharge experiment above 20 times, there was no change of 3 V/4 V capacity degradation. It was considered that the volume change of MnO/sub 6/ octahedron induced by sulfur substitution plays a key role in keeping the 3 V/4 V capacity. The refined composition of the compound could be confirmed with the ICP analysis.

The crystal structure transition in YBCO superconductor by Rietveld analysis Method (Rietveld 해석법에의한 YBCO 초전도체의 결정 구조 전이 연구)

  • 채기병;전용우;소대화
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1996.05a
    • /
    • pp.239-243
    • /
    • 1996
  • In this paper, we have tried to focus on the optimum conditions of crystal structure parameters on YBCO high Tc oxide-superconductor as an excel lent electronic parts. When we verify the characteristic improvement of superconductance and accurate reproduction and so forth, we have made use of RIETAN. We have varied the lattice constant with oxygen content from 6.0 to 7.0 as for transition of orthogonal structure and tetragonal structure for the superconductor. As the result of above, we have preyed that transition from orthogonal structure to tetragonal structure is made at the point of 6.6(oxygen content) by using the simulation.

  • PDF

Chloride binding isotherms of various cements basing on binding capacity of hydrates

  • Tran, Van Mien;Nawa, Toyoharu;Stitmannaithum, Boonchai
    • Computers and Concrete
    • /
    • v.13 no.6
    • /
    • pp.695-707
    • /
    • 2014
  • This study investigated the chloride binding isotherms of various cement types, especially the contributions of C-S-H and AFm hydrates to the chloride binding isotherms were determined. Ordinary Portland cement (OPC), Modified cement (MC), Rapid-hardening Portland cement (RHC) and Low-heat Portland cement (LHC) were used. The total chloride contents and free chloride contents were analyzed by ASTM. The contents of C-S-H, AFm hydrates and Friedel's salt were determined by X-ray diffraction Rietveld (XRD Rietveld) analysis. The results showed that OPC had the highest chloride binding capacity, and, LHC had the lowest binding capacity of chloride ions. MC and RHC had very similar capacities to bind chloride ions. Experimental equations which distinguish the chemically bound chloride and physically bound chloride were formulated to determine amounts of the bound chloride basing on chloride binding capacity of hydrates.

Effect of Nitrogen Treatment on the Structure and Magnetic Properties of $RuSr_2(EuCe)Cu_2O_z$ Compound (질소 열처리에 따른 $RuSr_2(EuCe)Cu_2O_z$ 계의 구조 및 자기적 특성)

  • Lee, H.K.;Kim, Y.I.;Kim, Y.C.
    • Progress in Superconductivity
    • /
    • v.13 no.3
    • /
    • pp.178-183
    • /
    • 2012
  • Two $RuSr_2(EuCe)Cu_2O_z$ samples (as prepared and after $N_2$ treatment) have been investigated by thermogravimetric (TC) analysis, high-resolution x-ray powder diffraction and magnetization measurements. TG measurements which were carried out in $H_2/Ar$ atmosphere showed that the $N_2$ treatment of the as-prepared sample at $650^{\circ}C$ for 2h leads to a decrease in the oxygen content z by about 0.25. This oxygen depletion was accompanied by an increase in the magnetic transition temperature from 54.0 K to 114.9 K. This magnetic behavior is discussed in connection with the results of Rietveld analysis of the x-ray diffraction data which showed that the $N_2$ treatment resulted in both a significant increase in the rotation angle of the $RuO_6$ octahedra and a decrease in c-lattice parameter of the sample.

Crystal and Block Structures of Hexagonal Ferrites (육방정 페라이트의 결정과 Block 구조)

  • Shin, Hyung-Sup
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.3
    • /
    • pp.205-215
    • /
    • 2012
  • It has been studied the crystal and block structures of the hexagonal ferrites with M, W, Y and Z types prepared by various coprecipitation-oxidation method. The structures have been refined with a Rietveld analysis of the powder X-ray diffraction pattern with high precision ($R_{WP}$ <0.09, $R_I$ <0.03). The density difference between the S-blocks was proportioned to the cobalt contents in hexagonal ferrites, but that between the R or T-blocks was relatively small. Compared with the blocks and cation-oxygen polyhedra in BaM ($BaFe_{12}O_{19}$), those were bulky to the normal direction for the c-axis in $Co_2W$ ($BaCo_2Fe_{16}O_{27}$) and to the parallel direction for the c-axis in $Co_2Y$ ($Ba_2Co_2Fe_{12}O_{22}$) and $Co_2Z$ ($Ba_3Co_2Fe_{24}O_{41}$). The S-blocks of $Co_2W$, $Co_2Y$, and $Co_2Z$ were unstable and distorted. Because the T-block of $Co_2Z$ was unstable, the T-block was decomposed into the Ba-rich phase and $Co_2W$ at high temperatures above $1200^{\circ}C$. A standard powder X-ray diffraction pattern for $Co_2Z$ was proposed as well.

Numerical investigation on gypsum and ettringite formation in cement pastes subjected to sulfate attack

  • Zuo, Xiao-Bao;Wang, Jia-Lin;Sun, Wei;Li, Hua;Yin, Guang-Ji
    • Computers and Concrete
    • /
    • v.19 no.1
    • /
    • pp.19-31
    • /
    • 2017
  • This paper uses modelling and experiment to perform a quantitative analysis for the gypsum and ettringite formations in cement pastes subjected to sulfate attack. Firstly, based on Fick's law and chemical reaction kinetics, a diffusion model of sulfate ions in cement pastes is proposed, and then the model of the gypsum and ettringite formations is established to analyze its contents in cement pastes with corrosion time. Secondly, the corrosion experiment of the specimens with cement pastes immersed into 2.5%, 5.0% and 10.0% $Na_2SO_4$ solutions are carried out, and by using XRD-Rietveld method, the phases of powder samples from the specimens are quantitatively analyzed to obtain the contents of gypsum and ettringite in different surface depth, solution concentration and corrosion time. Finally, the contents of gypsum and ettringite calculated by the models are compared with the results from the XRD experiments, and then the effects of surface depth, corrosion time and solution concentration on the gypsum and ettringite formations in cement pastes are discussed.

Analyses of Mineral Composition of Geochang Granitic Rocks for Stone Specification (거창화강석 품질기준 설정을 위한 광물조성 분석)

  • Choi, Jin-Beom;Jwa, Yong-Joo;Kim, Keon-Ki;Hwang, Gil-Chan
    • Journal of the Mineralogical Society of Korea
    • /
    • v.19 no.4 s.50
    • /
    • pp.363-381
    • /
    • 2006
  • Mineral compositions of granitic rocks from Geochang, Pocheon, Iksan, and China were obtained by the modal analysis, CIPW norm calculations, and Rietveld quantitative analysis for stone specification of the Geochang granitic rocks. The Geochang granitic rocks show grey to dark in color and medium grained porphyritic texture. They mainly consist of quartz, plagioclase, alkali feldspar, and biotite. Among three different method for determining the mineral compositions of granitic rocks, normative compositions using X-ray fluorescence data are not appropriate for representing real mineral composition. Rietveld quantitative analysis using X-ray powder diffraction data is proved better method to determine exact mineral compositions than modal analysis using microscopic observation. Q-A-P diagram shows that the Geochang granitic rocks are typical granodiorite, whereas the granitic rocks of Pocheon, Iksan, and China are monzogranite, monzogranite to granodiorite, and granodiorite, respectively. Compared to China ones, the Geochang granitic rocks are nearly close to each other in mineral composition.

Effect of Partial Substitution of Magnetic Rare Earths for La on the Structure, Electric Transport And Magnetic Properties of Oxygen Deficient Phase LaSr2MnCrO7-δ

  • Singh, Devinder;Sharma, Sushma;Mahajan, Arun;Singh, Suram;Singh, Rajinder
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.6
    • /
    • pp.1679-1683
    • /
    • 2013
  • Intergrowth perovskite type complex oxides $La_{0.8}Ln_{0.2}Sr_2MnCrO_{7-{\delta}}$ (Ln=La, Nd, Gd, and Dy) have been synthesized by sol-gel method. Rietveld profile analysis shows that the phases crystallize with tetragonal unit cell in the space group I4/mmm. The unit cell parameters a and c decrease with decreasing effective ionic radius of the lanthanide ion. The magnetic studies suggest that the ferromagnetic interactions are dominant due to $Mn^{3+}$-O-$Mn^{4+}$ and $Mn^{3+}$-O-$Cr^{3+}$ double exchange interactions. Both Weiss constant (${\theta}$) and Curie temperature ($T_C$) increase with decreasing ionic radius of lanthanide ion. It was found that the transport mechanism is dominated by Mott's variable range hopping (VRH) model with an increase of Mott localization energy.

Crystal Chemistry of Ilmenite from the Hadong anorthosite Massif (하동 회장암체 내에서 산출하는 티탄철석의 결정화학)

  • 최진범;조현구
    • Journal of the Mineralogical Society of Korea
    • /
    • v.9 no.1
    • /
    • pp.43-53
    • /
    • 1996
  • The detailed crystal chemistry of ilmenite from the Hadong massif was studied by the EPMA, M ssbauer spectroscopy, and Rietveld structural refinement using X-ray powder diffraction data. The ilmenite-bearing anorthosite shows complicated mineral assemblage which consists of plagioclase, clinopyroxene, hornblende, biotite, chlorite, apatite, allanite, and zircon. Anorthite is andesine in composition (Ab 28-57), and clinopyroxene drops in ferro-hypersthene (Fs 62-70). Ilmenite is trigonal symmetry with R space group, whose structure shows the alternation of Fe2+ (M1 site) octahedral layer and Ti (M2 site) layer along c axis. M ssbauer spectroscopy indicates that there are three doubles which assigned to couple of Fe2+($\delta$=0.812, 0.890mm/sec) and one Fe3+($\delta$=0.303mm/sec) in octahedral sites. Their Fe3+/$\Sigma$Fe is 0.065 and chemical formula is established as Fe2+0.94Fe3+0.07Ti0.97O3 using both EPMA and M ssbauer analysis. Rietveld structural refinement reveals that site occupancies of Fe in M1 and Ti in M2 are 91.2% and 89.4%, respectively. This implies that Ti and Fe2+ are alternatively occupy M1 and M2 sites. In addition, smaller M2 site is more preferable to Fe3+ occupancy over M1.

  • PDF