Browse > Article

Analyses of Mineral Composition of Geochang Granitic Rocks for Stone Specification  

Choi, Jin-Beom (Department of Earth and Environmental Sciences and Research Institute of Natural Science, Gyeongsang National University)
Jwa, Yong-Joo (Department of Earth and Environmental Sciences and Research Institute of Natural Science, Gyeongsang National University)
Kim, Keon-Ki (Department of Earth and Environmental Sciences and Research Institute of Natural Science, Gyeongsang National University)
Hwang, Gil-Chan (Department of Earth and Environmental Sciences and Research Institute of Natural Science, Gyeongsang National University)
Publication Information
Journal of the Mineralogical Society of Korea / v.19, no.4, 2006 , pp. 363-381 More about this Journal
Abstract
Mineral compositions of granitic rocks from Geochang, Pocheon, Iksan, and China were obtained by the modal analysis, CIPW norm calculations, and Rietveld quantitative analysis for stone specification of the Geochang granitic rocks. The Geochang granitic rocks show grey to dark in color and medium grained porphyritic texture. They mainly consist of quartz, plagioclase, alkali feldspar, and biotite. Among three different method for determining the mineral compositions of granitic rocks, normative compositions using X-ray fluorescence data are not appropriate for representing real mineral composition. Rietveld quantitative analysis using X-ray powder diffraction data is proved better method to determine exact mineral compositions than modal analysis using microscopic observation. Q-A-P diagram shows that the Geochang granitic rocks are typical granodiorite, whereas the granitic rocks of Pocheon, Iksan, and China are monzogranite, monzogranite to granodiorite, and granodiorite, respectively. Compared to China ones, the Geochang granitic rocks are nearly close to each other in mineral composition.
Keywords
Granitic rock; X-ray fluorescence analysis; CIPW norm; X-ray diffraction; Rietveld quantitative analysis; monzogranite; granodiorite;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 권성택, 이진한 (1997) 호남전단대의 운동시기에 관한 소고. 지질학회지, 33, 183-188
2 김남장, 김정환 (1970) 한국지질도 1:5만 거창 지질 도폭 및 설명서. 국립지질조사소, 14p
3 김용준, 조등룡, 박영석 (1989) 거창지역에 분포하는 중생대 화성암류에 대한 연령과 주성분 광물의 화학조성. 광산지질, 22, 117-127
4 김용준, 박영성, 강상원 (1994) 호남 전단대내에 분포하는 엽리상 화강암류의 지질시대와 생성과정 에 관한 연구. 자원환경지질학회, 27, 247-261
5 문용희, 최진범, 이병임 (2001) 합성 페롭스차이트형 $(K_2La_2Ti_nO_{2n+4})$ 광물의 결정학 및 층상구조에 관한 연구. 한국광물학회지, 14, 73-84
6 박계헌, 이혼선, 송용선, 정창식 (2006) 영남육괴 함양, 거창 및 영주 화강암-화강섬록암의 스핀 U-Pb 연대. 암석학회지, 15, 39-48   과학기술학회마을
7 최진범, Grover, J. (2006) Mn-전기석(Tsilaisite)의 합성 및 리트벨트 구조분석. 한국광물학회지, 19, 15-29   과학기술학회마을
8 Bish, D.L. and Howard, S.A. (1988) Quantitative phase analysis using the Rietveld method. J. Appl. Cryst., 21, 86-91   DOI
9 Chough, S.K., Kwon, S.T., Ree, J.H. and Choi, D.K. (2000) Tectonic and sedimentary evolution of the Korean peninsula: a review and new view. Earth Sci. Rev, 52, 175-235   DOI   ScienceOn
10 Hill, R.J. and Howard, C.J. (1987) Quantitative phase analysis from neutron powder diffraction data using the Rietveld method. J. Appl. Cryst., 20, 467-474   DOI
11 Monecke, T., Kohler, S., Kleeberg, R. and Herzig, P.M. (2001) Quantitative phase-analysis by the Rietveld method using X-ray powder-diffraction data: application to the study of alteration halos associated with volcanic-rock-hosted massive sulfide deposits. Can. Mineral., 39, 1617-1633   DOI
12 Yanai, S., Park, B.S. and Otoh, S. (1985) The Honam shear zone (S. Korea): Deformation and tectonic implication in the Far Eastern Science Paper. College of Arts and Science University of Tokyo, 35, 181-210
13 문용희, 최진범, 이병임 (2000) 리트벨트법에 의한 합성인회석 내의 희토류 원소의 거동에 관한 연 구. 한국광물학회지, 13, 221-230
14 Davis, B.L. and Walawender, M.J. (1982) Quantitative mineralogical analysis of granitoid rocks: a comparison of X-ray and optical techniques. Am. Mineral., 67, 1135-1143
15 김용준, 김정빈, 박재봉 (1991) 호남전단대내에 분포 하는 엽리상화강암류의 암석화학과 성인. 지질학회지, 27, 52-63
16 박천영, 박영석, 신인현, 정연중, Lizumi, S. (1998) 형광 X-선 분석장치를 이용한 화성암류 중의 주 성분원소 정량분석. 한국지구과학회지, 19, 182-193
17 이상만, 나기창, 이상헌, 박배영, 이상원 (1981) 소백산육괴(남동부)의 변성암복합체에 대한 변성작용에 관한 연구 지질학회지, 17, 169-188
18 Snyder, R.L. and Bish, D.L. (1989) Quantitative analysis. In. Bish, D.L. and Post, J.E. (eds.), Modern Powder Diffraction, Reviews in Mineralogy, Vol. 20, Mineral. Soc. America, 101-144
19 Weidler, P.G., Luster, J., Schneider, J.S., Sticher, H. and Gehring, A.U. (1998) The Rietveld method applied to the quantitative mineralogical and chemical analysis of a ferralitic soil. European J. Soil Sci., 49, 95-105   DOI   ScienceOn
20 사공희 , 좌용주 (1997) 청산 일대에 분포하는 화강암류의 광물조성 과 주성분원소 지구화학. 암석학회지, 6, 185-209
21 Rietveld, H.M. (1969) A profile refinement method for nuclear and magnetic structure. J. Appl. Crystal., 2, 65-71   DOI
22 Lee, C.L., Lee, Y.J. and Hayashi, M. (1992) Petrology of Jurassic granitoids in the Hamyang-Geochang Area, Korea. J. Korea Inst. Min. Geol., 25, 447-461
23 좌용주, 최진법, 조현구, 김순오, 권성택 (2006) 거창 화강석 특화육성 품질기준 설정(결과보고서). 거창군, 301p
24 Barker, F. (1979) Trondhjemite: Definition, environment and hypotheses of origin. In: Barker, F. (ed.), Trondhjemite, Dacites and Related Rocks. Elsevier, Amdsterdam, 1-12
25 Young, R.A. (1993) The Rietveld Method. IUCr. Monogr. on Crystal. Vol. 5, IUCr., Oxford, 298p
26 최진범, 김태현 (2001) 리트벨트법을 이용한 K-Ba 치환 합성 홀란다이트$(K_2Ba_{1-x}Cr_2Ti_6O_{16})$의 결정구조 연구. 한국광물학회지, 14, 128-136
27 Bish, D.L. and Post, J.E. (1988) Quantitative analysis of geological materials using X-ray powder diffraction data and the Rietveld refinement method. Geol. Soc. Am. Abstr. Programs, 20, A223