DOI QR코드

DOI QR Code

Numerical investigation on gypsum and ettringite formation in cement pastes subjected to sulfate attack

  • Zuo, Xiao-Bao (Department of Civil Engineering, Nanjing University of Science & Technology) ;
  • Wang, Jia-Lin (Department of Civil Engineering, Nanjing University of Science & Technology) ;
  • Sun, Wei (Jiangsu Key Laboratory of Construction Materials, Southeast University) ;
  • Li, Hua (Jiangsu Key Laboratory of Construction Materials, Southeast University) ;
  • Yin, Guang-Ji (Department of Civil Engineering, Nanjing University of Science & Technology)
  • Received : 2015.10.30
  • Accepted : 2016.10.15
  • Published : 2017.01.25

Abstract

This paper uses modelling and experiment to perform a quantitative analysis for the gypsum and ettringite formations in cement pastes subjected to sulfate attack. Firstly, based on Fick's law and chemical reaction kinetics, a diffusion model of sulfate ions in cement pastes is proposed, and then the model of the gypsum and ettringite formations is established to analyze its contents in cement pastes with corrosion time. Secondly, the corrosion experiment of the specimens with cement pastes immersed into 2.5%, 5.0% and 10.0% $Na_2SO_4$ solutions are carried out, and by using XRD-Rietveld method, the phases of powder samples from the specimens are quantitatively analyzed to obtain the contents of gypsum and ettringite in different surface depth, solution concentration and corrosion time. Finally, the contents of gypsum and ettringite calculated by the models are compared with the results from the XRD experiments, and then the effects of surface depth, corrosion time and solution concentration on the gypsum and ettringite formations in cement pastes are discussed.

Keywords

Acknowledgement

Supported by : National Science Foundation of China, Jiangsu Province Science Foundation

References

  1. Bonen, D. (1992), "Composition and appearance of magnesium silicate hydrate and its relation to deterioration of cement based materials", J. Am. Ceram. Soc., 75(10), 2904-2906. https://doi.org/10.1111/j.1151-2916.1992.tb05530.x
  2. Brown, P., Hooton, R.D. and Clark, B. (2004), "Microstructural changes in concretes with sulfate exposure", Cem. Concrete Compos., 26(8), 993-999. https://doi.org/10.1016/j.cemconcomp.2004.02.033
  3. Chandra, A. and Bagchi, B. (1999), "Ion conductance in electrolyte solutions", Chem. Phys., 110(20), 1024-1034.
  4. Clifton, J.R., Bentz, D.P. and Pommersheim, J.M. (1994), Sulfate diffusion in concrete, NISTIR 5361, Building and Fire Research Laboratory, National Institute of Standards and Technology, Gaithersburg.
  5. Coelho, A.A., Evans, J.S.O., Evans, I.R., Kern, A. and Parsons, S. (2011), "The TOPAS symbolic computation system", Powd. Diffr., 26(S1), S22-S25. https://doi.org/10.1154/1.3555294
  6. Diamond, S. and Lee, R.J. (1999), "Microstructural alterations associated with sulfate attack in permeable concretes", J. Am. Ceram. Soc., 123-174.
  7. Frank, R. and Raoul, J. (1999), "The deterioration of mortar in sulphate environments", Constr. Build. Mater., 13(6), 321-327. https://doi.org/10.1016/S0950-0618(99)00031-8
  8. Garboczi, E.J. (1990), "Permeability, diffusivity, and microstructural parameters: A critical review", Cement Concrete Res., 20(4), 591-601. https://doi.org/10.1016/0008-8846(90)90101-3
  9. Gerard, B., Bellego, C.L. and Bernard, O. (2002), "Simplified modelling of calcium leaching of concrete in various environments", Mater. Struct., 35(254), 632-640. https://doi.org/10.1007/BF02480356
  10. Gollop, R.S. and Taylor, H.F.W. (1992), "Microstructural and microanalytical studies of sulfate attack: I. ordinary Portland cement paste", Cement Concrete Res., 22(6), 1027-1038. https://doi.org/10.1016/0008-8846(92)90033-R
  11. Gonzalez, M.A. and Irassar, E.F. (1997), "Ettringite formation in low ${\theta}2{\theta}$ portland cement exposed to sodium sulfate solution", Cement Concrete Res., 27(7), 1061-1072. https://doi.org/10.1016/S0008-8846(97)00093-8
  12. Gospodinov, P.N. (2005), "Numerical simulation of 3D sulfate ion diffusion and liquid push out of the material capillaries in cement composites", Cement Concrete Res., 35(3), 520-526. https://doi.org/10.1016/j.cemconres.2004.07.005
  13. Guneyisi, E., Gesoglu, M. and Mermerdas, K. (2010), "Strength deterioration of plain and metakaolin concretes in aggressive sulfate environments", J. Mater. Civil. Eng., 22(4), 403-407. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000034
  14. Kalipcilar, I., Mardani-Aghabaglou, A., Sezer, G.I., Altun, S. and Sezer, A. (2016), "Assessment of the effect of sulfate attack on cement stabilized montmorillonite", Geomech. Eng., 10(6), 807-826. https://doi.org/10.12989/gae.2016.10.6.807
  15. Kamali, S., Moranville, M. and Leclercq, S. (2008), "Material and environmental parameter effects on the leaching of cement pastes: experiments and modeling", Cement Concrete Res., 38(4), 575-585. https://doi.org/10.1016/j.cemconres.2007.10.009
  16. Laidler, K.J. (1987), Chemical Kinetics, 3rd Edition, Harper and Row Publishers, New York, U.S.A.
  17. Liu, Z., Deng, D. and Schutter, G.D. (2014), "Does concrete suffer sulfate salt weathering?", Constr. Build. Mater., 66(15), 692-701. https://doi.org/10.1016/j.conbuildmat.2014.06.011
  18. Lothenbach, B., Bary, B., Bescop, P.L., Schmidt, T. and Leterrier, N. (2010), "Sulfate ingress in Portland cement", Cement Concrete Res., 40(8), 1211-1225. https://doi.org/10.1016/j.cemconres.2010.04.004
  19. Mainguy, M., Tognazzi, C., Torrenti, J.M. and Adenot, F. (2000), "Modeling of leaching in pure cement paste and mortar", Cement Concrete Res., 30(1), 83-90. https://doi.org/10.1016/S0008-8846(99)00208-2
  20. Monteiro, P.J.M. and Kurtis, K.E. (2003), "Time to failure for concrete exposed to severe sulfate attack", Cement Concrete Res., 33(7), 987-993. https://doi.org/10.1016/S0008-8846(02)01097-9
  21. Nakarai, K., Ishida, T. and Maekawa, K. (2006), "Modeling of calcium leaching from cement hydrates couples with micropore solution formation", J. Adv. Concrete Technol., 4(3), 395-407. https://doi.org/10.3151/jact.4.395
  22. Neville, A. (2004), "The confused world of sulfate attack on concrete", Cement Concrete Res., 34(8), 1275-1296. https://doi.org/10.1016/j.cemconres.2004.04.004
  23. Rahman, M.M. and Bassuoni, M.T. (2014), "Thaumasite sulfate attack on concrete: Mechanisms, influential factors and mitigation", Constr. Build. Mater., 73(30), 652-662. https://doi.org/10.1016/j.conbuildmat.2014.09.034
  24. Samson, E.J., Marchand, J., Robert, L. and Bournazel, J.P. (1999), "Modeling ion diffusion mechanisms in porous media", J. Numer. Meth. Eng., 46(12), 2043-2060. https://doi.org/10.1002/(SICI)1097-0207(19991230)46:12<2043::AID-NME795>3.0.CO;2-7
  25. Santhanam, M., Cohen, M.D. and Olek, J. (2003), "Mechanism of sulfate attack: A fresh look Part 2: Proposed mechanisms", Cement Concrete Res., 33(3), 341-346. https://doi.org/10.1016/S0008-8846(02)00958-4
  26. Santhannam, M., Cohen, M.D. and Olek, J. (2001), "Sulfate attack research-whither now", Cement Concrete Res., 31(6), 845-851. https://doi.org/10.1016/S0008-8846(01)00510-5
  27. Sarkar, S., Mahadevan, S. and Meeussen, J.C.L. (2010), "Numerical simulation of cementitious materials degradation under external sulfate attack", Cement Concrete Compos., 32(3), 241-252. https://doi.org/10.1016/j.cemconcomp.2009.12.005
  28. Sarkar, S., Mahadevan, S., Meeussen, J.C.L., Vander Sloot, H. and Kosson, D.S. (2012), "Sensitivity analysis of damage in cement materials under sulfate attack and calcium leaching", J. Mater. Civil. Eng., 24(4), 430-440. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000407
  29. Schmidt, R. and Kern, A. (2001), "Quantitative XRD phase analysis", World. Cement, 32, 35-42.
  30. Schmidt, T., Lothenbach, B., Romer, M., Neuenschwander, J. and Scrivener, K.L. (2009), "Physical and microstructural aspects of sulfate attack on ordinary and limestone blended Portland cement", Cement Concrete Res., 39(12), 1111-1121. https://doi.org/10.1016/j.cemconres.2009.08.005
  31. Scrivener, K.L., Fullmann, T., Gallucci, E., Walenta, G. and Bermejo, E. (2004), "Quantitative study of Portland cement hydration by X-ray diffraction/Rietveld analysis and independent methods", Cement Concrete Res., 34(9), 1541-1547. https://doi.org/10.1016/j.cemconres.2004.04.014
  32. Shazali, M.A., Baluch, M.H. and Al-Gadhib, A.H. (2006), "Predicting residual strength in unsaturated concrete exposed to sulfate attack", J. Mater. Civil Eng., 18(3), 343-354. https://doi.org/10.1061/(ASCE)0899-1561(2006)18:3(343)
  33. Siad, H., Kamali-Bernard, S., Mesbah, H.A., Escadeillas, G., Mouli, M. and Khelafi, H. (2013), "Characterization of the degradation of self-compacting concrete in sodium sulfate environment: Influence of different mineral admixtures", Constr. Build. Mater., 47, 1188-1200. https://doi.org/10.1016/j.conbuildmat.2013.05.086
  34. Sun, W. and Yu, H.F. (2001), Research Advances on Concrete Durability and Life-time Evaluation, Forum on Safety and Durability of Civil Structures, China Architecture and Building Press, Beijing.
  35. Sun, Z.Z. (2005), Numerical Solutions of Partial Differential Equation, Science Press, Beijing, China.
  36. Suresh, A.K. and Ghoroi, C. (2009), "Solid-solid reactions in series: A modeling and experimental Study", AICHE. J., 55(9), 2399-2413. https://doi.org/10.1002/aic.11829
  37. Tian, B. and Cohen, M.D. (2000), "Expansion of alite paste caused by gypsum formation during sulfate attack", J. Mater. Civil Eng., 12(1), 24-25. https://doi.org/10.1061/(ASCE)0899-1561(2000)12:1(24)
  38. Tixier, R. and Mobasher, B. (2003), "Modeling of damage in cement-based materials subjectedto external sulfate attack. I: Formulation, II: Comparison with experiments", J. Mater. Civil Eng., 15(4), 305-322. https://doi.org/10.1061/(ASCE)0899-1561(2003)15:4(305)
  39. Wan, K.S., Li, Y. and Sun, W. (2013), "Experimental and modelling research of the accelerated calcium leaching of cement paste in ammonium nitrate solution", Constr. Build. Mater., 40, 832-846. https://doi.org/10.1016/j.conbuildmat.2012.11.066
  40. Wee, T.H., Zhu, J., Chua, H.T. and Wong, S.F. (2001), "Resistance of blended cement pastes to leaching in distilled water at ambient and higher temperatures", ACI Mater. J., 98(2), 184-193.
  41. Xiong, C., Jiang, L., Zhang, Y. and Chu, H. (2015), " Modeling of damage in cement paste subject to external sulfate attack", Comput. Concrete, 16(6), 847-864. https://doi.org/10.12989/cac.2015.16.6.847
  42. Yang, D.Y., We, S.N. and Tan, Y.Q. (2005), "Performance evaluation of binary blends of Portland cement and fly ash with complex admixture for durable concrete structures", Comput. Concrete, 2(5), 381-388. https://doi.org/10.12989/cac.2005.2.5.381
  43. Yoon, I.S. (2009), "Simple approach to calculate chloride diffusivity of concrete considering carbonation", Comput. Concrete, 6(1), 1-18. https://doi.org/10.12989/cac.2009.6.1.001
  44. Young, J.F. (1998), "Cement-based materials", Curr. Opin Solid State Mater. Sci., 3(5), 505-509. https://doi.org/10.1016/S1359-0286(98)80016-8
  45. Young, R.A. (1993), The Rietveld method, Oxford University Press, Oxford.
  46. Zang, Y.R. (1995), Chemical reaction kinetics, Nankai university press, Tianjin.
  47. Zuo, X.B., Sun, W. and Yu, C. (2012b), "Numerical investigation on expansive volume strain in concrete subjected to sulfate attack", Constr. Build. Mater., 36(11), 404-410. https://doi.org/10.1016/j.conbuildmat.2012.05.020
  48. Zuo, X.B., Sun, W., Li, H. and Zhao, Y.K. (2012c), "Modeling of diffusion-reaction behavior of sulfate ion in concrete under sulfate environments", Comput. Concrete, 10(1), 60-75.
  49. Zuo, X.B., Sun, W., Li, H. and Zhou, W.J. (2012a), "Geometrical model for tortuosity of transport path in hardened cement pastes", Adv. Cement Res., 24(3), 145-154. https://doi.org/10.1680/adcr.10.00042
  50. Zuo, X.B., Sun, W., Liu, Z.Y and Tang, Y.J. (2014), "Numerical investigation on tortuosity of transport path in cement-based materials", Comput. Concrete, 13(3), 309-323. https://doi.org/10.12989/cac.2014.13.3.309
  51. Zuo, X.B., Sun, W., Yu, C. and Wan, X.R. (2010d), "Modeling of ion diffusion coefficient in saturated concrete", Comput. Concrete, 7(5), 421-435. https://doi.org/10.12989/cac.2010.7.5.421

Cited by

  1. Numerical simulation on time-dependent mechanical behavior of concrete under coupled axial loading and sulfate attack vol.142, 2017, https://doi.org/10.1016/j.oceaneng.2017.07.016
  2. Numerical investigation of the external sulfate attack induced expansion response of cement paste by using crystallization pressure vol.27, pp.2, 2019, https://doi.org/10.1088/1361-651X/aaf76a
  3. Modeling of time-varying stress in concrete under axial loading and sulfate attack vol.19, pp.2, 2017, https://doi.org/10.12989/cac.2017.19.2.143
  4. The research on static and dynamic mechanical properties of concrete under the environment of sulfate ion and chlorine ion vol.20, pp.2, 2017, https://doi.org/10.12989/cac.2017.20.2.205
  5. X-ray CT monitoring of macro void development in mortars exposed to sulfate attack vol.21, pp.4, 2017, https://doi.org/10.12989/cac.2018.21.4.367
  6. Analysis on the hazardous jarosite added concrete vol.191, pp.None, 2017, https://doi.org/10.1016/j.conbuildmat.2018.10.006
  7. Effect of interfacial transition zone on the transport of sulfate ions in concrete vol.192, pp.None, 2017, https://doi.org/10.1016/j.conbuildmat.2018.10.140
  8. Stochastic Dynamic Model of Sulfate Corrosion Reactions in Concrete Materials considering the Effects of Colored Gaussian Noises vol.2019, pp.None, 2019, https://doi.org/10.1155/2019/6434718
  9. Multiscale Numerical Simulation of Expansion Response of Hardened Cement Paste at Dormant Period of External Sulfate Attack vol.145, pp.7, 2017, https://doi.org/10.1061/(asce)em.1943-7889.0001622
  10. Experimental study and modeling on stress-strain curve of sulfate-corroded concrete vol.28, pp.1, 2017, https://doi.org/10.12989/cac.2021.28.1.001