Acknowledgement
Supported by : National Science Foundation of China, Jiangsu Province Science Foundation
References
- Bonen, D. (1992), "Composition and appearance of magnesium silicate hydrate and its relation to deterioration of cement based materials", J. Am. Ceram. Soc., 75(10), 2904-2906. https://doi.org/10.1111/j.1151-2916.1992.tb05530.x
- Brown, P., Hooton, R.D. and Clark, B. (2004), "Microstructural changes in concretes with sulfate exposure", Cem. Concrete Compos., 26(8), 993-999. https://doi.org/10.1016/j.cemconcomp.2004.02.033
- Chandra, A. and Bagchi, B. (1999), "Ion conductance in electrolyte solutions", Chem. Phys., 110(20), 1024-1034.
- Clifton, J.R., Bentz, D.P. and Pommersheim, J.M. (1994), Sulfate diffusion in concrete, NISTIR 5361, Building and Fire Research Laboratory, National Institute of Standards and Technology, Gaithersburg.
- Coelho, A.A., Evans, J.S.O., Evans, I.R., Kern, A. and Parsons, S. (2011), "The TOPAS symbolic computation system", Powd. Diffr., 26(S1), S22-S25. https://doi.org/10.1154/1.3555294
- Diamond, S. and Lee, R.J. (1999), "Microstructural alterations associated with sulfate attack in permeable concretes", J. Am. Ceram. Soc., 123-174.
- Frank, R. and Raoul, J. (1999), "The deterioration of mortar in sulphate environments", Constr. Build. Mater., 13(6), 321-327. https://doi.org/10.1016/S0950-0618(99)00031-8
- Garboczi, E.J. (1990), "Permeability, diffusivity, and microstructural parameters: A critical review", Cement Concrete Res., 20(4), 591-601. https://doi.org/10.1016/0008-8846(90)90101-3
- Gerard, B., Bellego, C.L. and Bernard, O. (2002), "Simplified modelling of calcium leaching of concrete in various environments", Mater. Struct., 35(254), 632-640. https://doi.org/10.1007/BF02480356
- Gollop, R.S. and Taylor, H.F.W. (1992), "Microstructural and microanalytical studies of sulfate attack: I. ordinary Portland cement paste", Cement Concrete Res., 22(6), 1027-1038. https://doi.org/10.1016/0008-8846(92)90033-R
-
Gonzalez, M.A. and Irassar, E.F. (1997), "Ettringite formation in low
${\theta}2{\theta}$ portland cement exposed to sodium sulfate solution", Cement Concrete Res., 27(7), 1061-1072. https://doi.org/10.1016/S0008-8846(97)00093-8 - Gospodinov, P.N. (2005), "Numerical simulation of 3D sulfate ion diffusion and liquid push out of the material capillaries in cement composites", Cement Concrete Res., 35(3), 520-526. https://doi.org/10.1016/j.cemconres.2004.07.005
- Guneyisi, E., Gesoglu, M. and Mermerdas, K. (2010), "Strength deterioration of plain and metakaolin concretes in aggressive sulfate environments", J. Mater. Civil. Eng., 22(4), 403-407. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000034
- Kalipcilar, I., Mardani-Aghabaglou, A., Sezer, G.I., Altun, S. and Sezer, A. (2016), "Assessment of the effect of sulfate attack on cement stabilized montmorillonite", Geomech. Eng., 10(6), 807-826. https://doi.org/10.12989/gae.2016.10.6.807
- Kamali, S., Moranville, M. and Leclercq, S. (2008), "Material and environmental parameter effects on the leaching of cement pastes: experiments and modeling", Cement Concrete Res., 38(4), 575-585. https://doi.org/10.1016/j.cemconres.2007.10.009
- Laidler, K.J. (1987), Chemical Kinetics, 3rd Edition, Harper and Row Publishers, New York, U.S.A.
- Liu, Z., Deng, D. and Schutter, G.D. (2014), "Does concrete suffer sulfate salt weathering?", Constr. Build. Mater., 66(15), 692-701. https://doi.org/10.1016/j.conbuildmat.2014.06.011
- Lothenbach, B., Bary, B., Bescop, P.L., Schmidt, T. and Leterrier, N. (2010), "Sulfate ingress in Portland cement", Cement Concrete Res., 40(8), 1211-1225. https://doi.org/10.1016/j.cemconres.2010.04.004
- Mainguy, M., Tognazzi, C., Torrenti, J.M. and Adenot, F. (2000), "Modeling of leaching in pure cement paste and mortar", Cement Concrete Res., 30(1), 83-90. https://doi.org/10.1016/S0008-8846(99)00208-2
- Monteiro, P.J.M. and Kurtis, K.E. (2003), "Time to failure for concrete exposed to severe sulfate attack", Cement Concrete Res., 33(7), 987-993. https://doi.org/10.1016/S0008-8846(02)01097-9
- Nakarai, K., Ishida, T. and Maekawa, K. (2006), "Modeling of calcium leaching from cement hydrates couples with micropore solution formation", J. Adv. Concrete Technol., 4(3), 395-407. https://doi.org/10.3151/jact.4.395
- Neville, A. (2004), "The confused world of sulfate attack on concrete", Cement Concrete Res., 34(8), 1275-1296. https://doi.org/10.1016/j.cemconres.2004.04.004
- Rahman, M.M. and Bassuoni, M.T. (2014), "Thaumasite sulfate attack on concrete: Mechanisms, influential factors and mitigation", Constr. Build. Mater., 73(30), 652-662. https://doi.org/10.1016/j.conbuildmat.2014.09.034
- Samson, E.J., Marchand, J., Robert, L. and Bournazel, J.P. (1999), "Modeling ion diffusion mechanisms in porous media", J. Numer. Meth. Eng., 46(12), 2043-2060. https://doi.org/10.1002/(SICI)1097-0207(19991230)46:12<2043::AID-NME795>3.0.CO;2-7
- Santhanam, M., Cohen, M.D. and Olek, J. (2003), "Mechanism of sulfate attack: A fresh look Part 2: Proposed mechanisms", Cement Concrete Res., 33(3), 341-346. https://doi.org/10.1016/S0008-8846(02)00958-4
- Santhannam, M., Cohen, M.D. and Olek, J. (2001), "Sulfate attack research-whither now", Cement Concrete Res., 31(6), 845-851. https://doi.org/10.1016/S0008-8846(01)00510-5
- Sarkar, S., Mahadevan, S. and Meeussen, J.C.L. (2010), "Numerical simulation of cementitious materials degradation under external sulfate attack", Cement Concrete Compos., 32(3), 241-252. https://doi.org/10.1016/j.cemconcomp.2009.12.005
- Sarkar, S., Mahadevan, S., Meeussen, J.C.L., Vander Sloot, H. and Kosson, D.S. (2012), "Sensitivity analysis of damage in cement materials under sulfate attack and calcium leaching", J. Mater. Civil. Eng., 24(4), 430-440. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000407
- Schmidt, R. and Kern, A. (2001), "Quantitative XRD phase analysis", World. Cement, 32, 35-42.
- Schmidt, T., Lothenbach, B., Romer, M., Neuenschwander, J. and Scrivener, K.L. (2009), "Physical and microstructural aspects of sulfate attack on ordinary and limestone blended Portland cement", Cement Concrete Res., 39(12), 1111-1121. https://doi.org/10.1016/j.cemconres.2009.08.005
- Scrivener, K.L., Fullmann, T., Gallucci, E., Walenta, G. and Bermejo, E. (2004), "Quantitative study of Portland cement hydration by X-ray diffraction/Rietveld analysis and independent methods", Cement Concrete Res., 34(9), 1541-1547. https://doi.org/10.1016/j.cemconres.2004.04.014
- Shazali, M.A., Baluch, M.H. and Al-Gadhib, A.H. (2006), "Predicting residual strength in unsaturated concrete exposed to sulfate attack", J. Mater. Civil Eng., 18(3), 343-354. https://doi.org/10.1061/(ASCE)0899-1561(2006)18:3(343)
- Siad, H., Kamali-Bernard, S., Mesbah, H.A., Escadeillas, G., Mouli, M. and Khelafi, H. (2013), "Characterization of the degradation of self-compacting concrete in sodium sulfate environment: Influence of different mineral admixtures", Constr. Build. Mater., 47, 1188-1200. https://doi.org/10.1016/j.conbuildmat.2013.05.086
- Sun, W. and Yu, H.F. (2001), Research Advances on Concrete Durability and Life-time Evaluation, Forum on Safety and Durability of Civil Structures, China Architecture and Building Press, Beijing.
- Sun, Z.Z. (2005), Numerical Solutions of Partial Differential Equation, Science Press, Beijing, China.
- Suresh, A.K. and Ghoroi, C. (2009), "Solid-solid reactions in series: A modeling and experimental Study", AICHE. J., 55(9), 2399-2413. https://doi.org/10.1002/aic.11829
- Tian, B. and Cohen, M.D. (2000), "Expansion of alite paste caused by gypsum formation during sulfate attack", J. Mater. Civil Eng., 12(1), 24-25. https://doi.org/10.1061/(ASCE)0899-1561(2000)12:1(24)
- Tixier, R. and Mobasher, B. (2003), "Modeling of damage in cement-based materials subjectedto external sulfate attack. I: Formulation, II: Comparison with experiments", J. Mater. Civil Eng., 15(4), 305-322. https://doi.org/10.1061/(ASCE)0899-1561(2003)15:4(305)
- Wan, K.S., Li, Y. and Sun, W. (2013), "Experimental and modelling research of the accelerated calcium leaching of cement paste in ammonium nitrate solution", Constr. Build. Mater., 40, 832-846. https://doi.org/10.1016/j.conbuildmat.2012.11.066
- Wee, T.H., Zhu, J., Chua, H.T. and Wong, S.F. (2001), "Resistance of blended cement pastes to leaching in distilled water at ambient and higher temperatures", ACI Mater. J., 98(2), 184-193.
- Xiong, C., Jiang, L., Zhang, Y. and Chu, H. (2015), " Modeling of damage in cement paste subject to external sulfate attack", Comput. Concrete, 16(6), 847-864. https://doi.org/10.12989/cac.2015.16.6.847
- Yang, D.Y., We, S.N. and Tan, Y.Q. (2005), "Performance evaluation of binary blends of Portland cement and fly ash with complex admixture for durable concrete structures", Comput. Concrete, 2(5), 381-388. https://doi.org/10.12989/cac.2005.2.5.381
- Yoon, I.S. (2009), "Simple approach to calculate chloride diffusivity of concrete considering carbonation", Comput. Concrete, 6(1), 1-18. https://doi.org/10.12989/cac.2009.6.1.001
- Young, J.F. (1998), "Cement-based materials", Curr. Opin Solid State Mater. Sci., 3(5), 505-509. https://doi.org/10.1016/S1359-0286(98)80016-8
- Young, R.A. (1993), The Rietveld method, Oxford University Press, Oxford.
- Zang, Y.R. (1995), Chemical reaction kinetics, Nankai university press, Tianjin.
- Zuo, X.B., Sun, W. and Yu, C. (2012b), "Numerical investigation on expansive volume strain in concrete subjected to sulfate attack", Constr. Build. Mater., 36(11), 404-410. https://doi.org/10.1016/j.conbuildmat.2012.05.020
- Zuo, X.B., Sun, W., Li, H. and Zhao, Y.K. (2012c), "Modeling of diffusion-reaction behavior of sulfate ion in concrete under sulfate environments", Comput. Concrete, 10(1), 60-75.
- Zuo, X.B., Sun, W., Li, H. and Zhou, W.J. (2012a), "Geometrical model for tortuosity of transport path in hardened cement pastes", Adv. Cement Res., 24(3), 145-154. https://doi.org/10.1680/adcr.10.00042
- Zuo, X.B., Sun, W., Liu, Z.Y and Tang, Y.J. (2014), "Numerical investigation on tortuosity of transport path in cement-based materials", Comput. Concrete, 13(3), 309-323. https://doi.org/10.12989/cac.2014.13.3.309
- Zuo, X.B., Sun, W., Yu, C. and Wan, X.R. (2010d), "Modeling of ion diffusion coefficient in saturated concrete", Comput. Concrete, 7(5), 421-435. https://doi.org/10.12989/cac.2010.7.5.421
Cited by
- Numerical simulation on time-dependent mechanical behavior of concrete under coupled axial loading and sulfate attack vol.142, 2017, https://doi.org/10.1016/j.oceaneng.2017.07.016
- Numerical investigation of the external sulfate attack induced expansion response of cement paste by using crystallization pressure vol.27, pp.2, 2019, https://doi.org/10.1088/1361-651X/aaf76a
- Modeling of time-varying stress in concrete under axial loading and sulfate attack vol.19, pp.2, 2017, https://doi.org/10.12989/cac.2017.19.2.143
- The research on static and dynamic mechanical properties of concrete under the environment of sulfate ion and chlorine ion vol.20, pp.2, 2017, https://doi.org/10.12989/cac.2017.20.2.205
- X-ray CT monitoring of macro void development in mortars exposed to sulfate attack vol.21, pp.4, 2017, https://doi.org/10.12989/cac.2018.21.4.367
- Analysis on the hazardous jarosite added concrete vol.191, pp.None, 2017, https://doi.org/10.1016/j.conbuildmat.2018.10.006
- Effect of interfacial transition zone on the transport of sulfate ions in concrete vol.192, pp.None, 2017, https://doi.org/10.1016/j.conbuildmat.2018.10.140
- Stochastic Dynamic Model of Sulfate Corrosion Reactions in Concrete Materials considering the Effects of Colored Gaussian Noises vol.2019, pp.None, 2019, https://doi.org/10.1155/2019/6434718
- Multiscale Numerical Simulation of Expansion Response of Hardened Cement Paste at Dormant Period of External Sulfate Attack vol.145, pp.7, 2017, https://doi.org/10.1061/(asce)em.1943-7889.0001622
- Experimental study and modeling on stress-strain curve of sulfate-corroded concrete vol.28, pp.1, 2017, https://doi.org/10.12989/cac.2021.28.1.001