• Title/Summary/Keyword: Rich-lean

Search Result 147, Processing Time 0.021 seconds

A Study on Numerical Simulation of Gaseous Flow in SCR Catalytic Filter of Diesel Exhaust Gas Aftertreatment Device

  • Bae, Myung-Whan;Syaiful, Syaiful;Mochimaru, Yoshihiro
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.3
    • /
    • pp.360-368
    • /
    • 2010
  • A SCR catalytic filter system is used for reducing $NO_x$ and soot emissions simultaneously from diesel combustors. The amount of ammonia (as a reducing agent) must be controlled with the amount of $NO_x$ to obtain an optimal $NO_x$ conversion. Hence, gas mixing between ammonia and exhaust gases is vital to ensure that the SCR catalyst is optimally used. If ammonia mass distribution is not uniform, slip potential will occur in rich concentration areas. At lean areas, on the other hand, the catalyst is not fully active. The better mixing is indicated by the higher uniformity of ammonia mass distribution which is necessary to be considered in SCR catalytic filter system. The ammonia mass distributions are depended on the flow field of fluids. In this study, the velocity field of gaseous flow is investigated to characterize the transport of ammonia in SCR catalytic filter system. The influence of different injection placements on the ammonia mass distribution is also discussed. The results show that the ammonia mass distribution is more uniform for the injector directed radially perpendicular to the main flow of inlet at the gravitational direction than that at the side wall for both laminar (Re = 640) and turbulent flows (Re = 4255). It is also found that the mixing index decreases as increasing the heating temperature in the case of ammonia injected at the side wall.

Study on the Optimal Injection Condition for HC-LNT Catalyst System for Diesel Engines with a Gasoline PFI Type Injector (가솔린 인젝터를 디젤엔진용 HC-LNT 촉매에 적용하기 위한 최적 분사 조건에 관한 연구)

  • Oh, Jung-Mo;Mun, Woong-Ki;Kim, Ki-Bum;Lee, Jin-Ha;Lee, Ki-Hyung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.2
    • /
    • pp.121-127
    • /
    • 2011
  • NOx (Nitrogen Oxide) reduction system periodically needs a rich or stoichiometric operating condition to reduce NOx. A new method that optimizes the control of external HC injection into a diesel exhaust pipe for HC-type LNT (Lean NOx Trap) catalyst system has been developed. In this paper, these catalysts are called HC-LNT catalysts. The concentration and amount of HC can be controlled by controlling the external injection. In this study, we investigated the relationship between the spray behavior of hydrocarbons injected into the transparent exhaust pipe and NOx reduction characteristics. From the results of this experiment, we obtained useful information about the optimum injection and position of HC injector to the exhaust pipe. Further, we obtained useful information about the optimal injection condition for an HC-LNT catalyst system with a gasoline PFI (port fuel injection) typeinjector.

The Characteristics of the Flame Propagation Velocity and Volume Integral of Reaction Rate with the Variation of Nozzle Diameter and Fuel Injection Flow Rate for a Liftoff Flame (부상화염에서 노즐직경과 연료유량에 따른 화염전파속도와 체적연소반응속도의 변화 특성에 관한 연구)

  • Ha, Ji-Soo;Kim, Tae-Kwon
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.2
    • /
    • pp.250-258
    • /
    • 2010
  • A numerical analysis of reactive flow in a liftoff flame is accomplished to elucidate the characteristics of flame propagation velocity and volume integral of reaction rate with the variation of nozzle diameter and fuel injection flow rate in a liftoff flame consisted with fuel rich region, fuel lean region and diffusion flame region. The increase of fuel injection velocity enhances flame propagation velocity for the selected three nozzle diameter(d=0.25, 0.30, 0.35mm), but its effect on the flame propagation velocity is not much greater than 4.3%. The increase of fuel flow rate is directly and linearly related with the volume reaction rate and so the volume reaction rate, not the flame propagation velocity, might be considered to accommodate the variation of fuel flow rate in a liftoff flame.

The Effects of Background Knowledge and Prior-Examples in Creative Problem Solving (창의적 아이디어 산출에 대한 배경지식과 사례의 영향)

  • 이정모;정재학
    • Korean Journal of Cognitive Science
    • /
    • v.13 no.2
    • /
    • pp.47-59
    • /
    • 2002
  • Three experiments were conducted to investigate whether different types (common vs. uncommon) of prior-examples entail different effects in creative problem solving, and whether types/levels (rich or lean. common or uncommon) of background knowledge interact with types of prior-examples. It was found that the example types and the types/levels of background knowledge do interact and have some differential effects on generating novel and useful ideas. In Experiment 1 and 2. uncommon examples had a positive effect - generating many novel and useful ideas. regardless of background knowledge types. while common examples had positive effects, only when the background knowledge was somewhat uncommon In Experiment 3 it was also found that types (irrelevant,. single common. single uncommon, or multiple common + uncommon) of background knowledge seemed to influence differently on the ease of finding solutions: when background knowledge is diverse or not directly related to the task problem, uncommon prior examples produced much greater number of novel ideas than it was with single common or sin91e uncommon background knowledge. Implications of the present study were discussed. in relation to mental sets and fixation.

  • PDF

Application of Flory-Treszczanowicz-Benson model and Prigogine-Flory-Patterson theory to Excess Molar Volume of Binary Mixtures of Ethanol with Diisopropyl Ether, Cyclohexane and Alkanes (C6-C9)

  • Kashyap, Pinki;Rani, Manju;Tiwari, Dinesh Pratap;Park, So-Jin
    • Korean Chemical Engineering Research
    • /
    • v.58 no.2
    • /
    • pp.257-265
    • /
    • 2020
  • Densities (ρ) for binary mixtures of ethanol (1) + diisopropyl ether (DIPE) or cyclohexane or alkane (C6-C9) (2) were measured at 298.15 K, 308.15 K and 318.15 K. The excess molar volume (VEm) of binary mixtures was calculated using ρ data and correlated with Redlich-Kister polynomial equation. The VEm values for binary mixtures of ethanol (1) + cyclohexane or n-alkane (C6-C9) (2) were positive, whereas for ethanol (1) + DIPE (2) these were negative. The magnitude of VEm values follows the order: cyclohexane > n-nonane > n-octane > n-heptane > n-hexane > DIPE. The VEm values have been interpreted qualitatively and also quantitatively in terms of Flory-Treszczanowicz-Benson (FTB) model and Prigogine-Flory-Patterson (PFP) theory. The values VEm predicted using FTB model agree well with experimental VEm values at all mole fractions. But the PFP theory describes well VEm data in ethanol-rich region (x1 > 0.5) for all binary mixtures and is able to predict the sign of VEm vs x1 curve for ethanol-lean region (x1 < 0.5) except for ethanol (1) + nonane (2) mixtures.

Effects of hydrogen-enriched LPG fuelled engine on exhaust emission and thermal efficiency (LPG 엔진에서 수소첨가에 따른 배기 성능과 열효율에 미치는 영향)

  • Kim, jinho;Cho, unglae;Choi, gyeungho
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.12 no.3
    • /
    • pp.169-176
    • /
    • 2001
  • The purpose of study is to obtain low-emission and high-efficiency in LPG engine with hydrogen enrichment. The test engine was named heavy-duty variable compression ratio single cylinder engine (VCSCE). The fuel supply system provides LPG/hydrogen mixtures based on same heating value. Various sensors such as crank shaft position sensor (CPS) and hall sensor supply spark timing data to ignition controller. Displacement of VCSCE is $1858.2cm^3$. VCSCE was runned 1400rpm with compression ratio 8. Spark timing was set MBT without knocking. Relative air-fuel ratio(${\lambda}$) of this work was varied between 0.76 and 1.5. As a result, i) Maximum thermal efficiency occurred at ${\lambda}$ value 1.0. It was shown that thermal efficiency was increased approximately 5% with hydrogen enrichment at same ${\lambda}$ value. ii) Engine-out carbon monoxide (CO) emissions were decreased at a great rate under LPG/hydrogen mixture fuelling. iii) Total hydrocarbon (THC) emission was much exhausted in rich zone, same as CO. But THC was exhausted a little bit more in lean zone. iv) Finally, engine-out oxides of nitrogen (NOx) was increased with ${\lambda}$ value 1.0 zone at a greater rate with hydrogen enrichment due to high adiabatic flame temperature.

  • PDF

A Study on the Synthesis of Mullite by Combustion Synthesis Process (연소 합성 공정을 이용한 Mullite의 합성)

  • Lee, Kang-Hyun;Lee, Choe-Hyun;Kim, Taik-Nam;Kim, Jong-Ock;Lim, Dae-Young;Park, Won-Kyu
    • The Journal of Engineering Research
    • /
    • v.2 no.1
    • /
    • pp.133-138
    • /
    • 1997
  • The conventional process in synthesizing mullite powder required high temperature ($1300^{\circ}C$) and long chemical reaction time. Thus the combustion process was used to synthesize the mullite powder in order to reduce the reaction time and temperature. The mixture of metal nitrate, fine silica, and fuel was used as the redox compounds under various experimental conditions. The combustion fire in hot plate experiment in rich, lean and stoichiometry fuel does not produce mullite. However, the obvious mullite, small amount of alumina and cristobalite was observed in the $500^{\circ}C$ pre-heat treatment furnace experiment. The components such as silica, urea, aluminm nitrate should be stoichiometry in order to make a perfect mullite crystal.

  • PDF

Effects of a Brown Rice Vegetarian Diet and Outdoor Walking Exercise on Body Composition and Blood Lipid Parameters in Collegians (단기간 현미채식과 옥외걷기운동이 대학생의 신체조성 및 혈중지질수준에 미치는 영향)

  • Kim, Sin-Seop;Yun, Mi-Eun
    • Journal of the Korean Dietetic Association
    • /
    • v.19 no.1
    • /
    • pp.59-68
    • /
    • 2013
  • This study examined the effects of a brown rice vegetarian diet and outdoor walking exercise program on body composition and blood lipid parameters in collegians. The mean age of respondents was 21.8 yrs (males) and 21.7 yrs (females). During the ten-day program, the respondents lived in a dormitory and had three meals. The respondents exercised one hour in the morning (6:20~7:20 am) and attended one and a half hour evening lecture (7:00~8:30 pm) everyday. The brown rice vegetarian diet consisted of brown rice, whole grain bread, beans, fresh vegetables, and fresh fruits contained $2043.2{\pm}112.7$ kcal (97.3% of RNI), 66.7 g protein (133.3% of RNI), 33.6 g dietary fiber (168.2% of RNI), vitamin A (194.2% of RNI), vitamin $B_1$(245.5% of RNI), vitamin $B_2$(225.1% of RNI), niacin (233.7% of RNI), vitamin $B_6$(277.1% of RNI), folic acid (128.4% of RNI), vitamin C (334.6% of RNI), iron (131.9% of RNI), zinc (112.4% of RNI) and calcium (60.3% of RNI). The results showed that there were significant increases in body weight (P<0.05) and BMI (P<0.05) in males and body weight (P<0.05) and lean body mass (P<0.01) in females. In addition, there were significant decreases in total cholesterol (P<0.001), LDL cholesterol (P<0.001), TG (P<0.05), and HDL-cholesterol (P<0.001) in males and total cholesterol (P<0.01) and LDL-cholesterol (P<0.01) in female. The ten day brown rice vegetarian diet rich in fiber and outdoor walking exercise program significantly increased body weight and decreased total cholesterol and LDL-cholesterol in collegians.

CO, $CO_2$ and NOx Emission Characteristics of Methane-Air Premixed Flame in Constant Volume Combustion Chamber (정적연소실에서 메탄-공기 예혼합화염의 CO, $CO_2$ 및 NOx 배출 특성)

  • 김태권;김성훈;장준영
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.2
    • /
    • pp.19-26
    • /
    • 2000
  • This paper presents the effects of initial pressure of mixture on CO, $CO_2$ and NOx emissions in constant volume combustion chamber. The CO, $CO_2,O_2,N_2$ concentrations in the chamber are determined by thermal conductivity detection (Gas-chromatograph) wile the NOx concentration is measured by chemiluminescent detection (NOx Analyser). Methane-air mixture is used as premixed fuel and the measurements are taken with equivalence ratios($\phi$) varing from 0.6 to 1.3, and initial pressures of methane-air mixture varing from 0.1MPa to 0.8MPa in constant volume combustion chamber. The NOx concentration steadily increases with increasing equivalence ratio, peaks in lean flame ($\phi$=0.85~0.9), and then rapidly decreases. However, as the initial pressure of mixture is increased, the equivalence ratio corresponding to the point of peak [NOx] shifts towards leaner conditions. This is caused by a similar shift in the peak [CH], which is caused by the variation with pressure and equivalence ratio of the rate of CH production from $CH_2$ and OH. The maximum combustion pressure peaks at $\phi$ =1.05 and the $CO_2$ concentration peaks at $\phi$=0.95~1.0 while the CO concentration rises sharply at the condition of fuel-rich mixtures. This is caused by complete combustion at $\phi$=0.95.

  • PDF

Experimental Studies on the Properties of Epoxy Resin Mortars (에폭시 수지 모르터의 특성에 관한 실험적 연구)

  • 연규석;강신업
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.26 no.1
    • /
    • pp.52-72
    • /
    • 1984
  • This study was performed to obtain the basic data which can be applied to the use of epoxy resin mortars. The data was based on the properties of epoxy resin mortars depending upon various mixing ratios to compare those of cement mortar. The resin which was used at this experiment was Epi-Bis type epoxy resin which is extensively being used as concrete structures. In the case of epoxy resin mortar, mixing ratios of resin to fine aggregate were 1: 2, 1: 4, 1: 6, 1: 8, 1:10, 1 :12 and 1:14, but the ratio of cement to fine aggregate in cement mortar was 1 : 2.5. The results obtained are summarized as follows; 1.When the mixing ratio was 1: 6, the highest density was 2.01 g/cm$^3$, being lower than 2.13 g/cm$^3$ of that of cement mortar. 2.According to the water absorption and water permeability test, the watertightness was shown very high at the mixing ratios of 1: 2, 1: 4 and 1: 6. But then the mixing ratio was less than 1 : 6, the watertightness considerably decreased. By this result, it was regarded that optimum mixing ratio of epoxy resin mortar for watertight structures should be richer mixing ratio than 1: 6. 3.The hardening shrinkage was large as the mixing ratio became leaner, but the values were remarkably small as compared with cement mortar. And the influence of dryness and moisture was exerted little at richer mixing ratio than 1: 6, but its effect was obvious at the lean mixing ratio, 1: 8, 1:10,1:12 and 1:14. It was confirmed that the optimum mixing ratio for concrete structures which would be influenced by the repeated dryness and moisture should be rich mixing ratio higher than 1: 6. 4.The compressive, bending and splitting tensile strenghs were observed very high, even the value at the mixing ratio of 1:14 was higher than that of cement mortar. It showed that epoxy resin mortar especially was to have high strength in bending and splitting tensile strength. Also, the initial strength within 24 hours gave rise to high value. Thus it was clear that epoxy resin was rapid hardening material. The multiple regression equations of strength were computed depending on a function of mixing ratios and curing times. 5.The elastic moduli derived from the compressive stress-strain curve were slightly smaller than the value of cement mortar, and the toughness of epoxy resin mortar was larger than that of cement mortar. 6.The impact resistance was strong compared with cement mortar at all mixing ratios. Especially, bending impact strength by the square pillar specimens was higher than the impact resistance of flat specimens or cylinderic specimens. 7.The Brinell hardness was relatively larger than that of cement mortar, but it gradually decreased with the decline of mixing ratio, and Brinell hardness at mixing ratio of 1 :14 was much the same as cement mortar. 8.The abrasion rate of epoxy resin mortar at all mixing ratio, when Losangeles abation testing machine revolved 500 times, was very low. Even mixing ratio of 1 :14 was no more than 31.41%, which was less than critical abrasion rate 40% of coarse aggregate for cement concrete. Consequently, the abrasion rate of epoxy resin mortar was superior to cement mortar, and the relation between abrasion rate and Brinell hardness was highly significant as exponential curve. 9.The highest bond strength of epoxy resin mortar was 12.9 kg/cm$^2$ at the mixing ratio of 1:2. The failure of bonded flat steel specimens occurred on the part of epoxy resin mortar at the mixing ratio of 1: 2 and 1: 4, and that of bonded cement concrete specimens was fond on the part of combained concrete at the mixing ratio of 1 : 2 ,1: 4 and 1: 6. It was confirmed that the optimum mixing ratio for bonding of steel plate, and of cement concrete should be rich mixing ratio above 1 : 4 and 1 : 6 respectively. 10.The variations of color tone by heating began to take place at about 60˚C, and the ultimate change occurred at 120˚C. The compressive, bending and splitting tensile strengths increased with rising temperature up to 80˚ C, but these rapidly decreased when temperature was above 800 C. Accordingly, it was evident that the resistance temperature of epoxy resin mortar was about 80˚C which was generally considered lower than that of the other concrete materials. But it is likely that there is no problem in epoxy resin mortar when used for unnecessary materials of high temperature resistance. The multiple regression equations of strength were computed depending on a function of mixing ratios and heating temperatures. 11.The susceptibility to chemical attack of cement mortar was easily affected by inorganic and organic acid. and that of epoxy resin mortar with mixing ratio of 1: 4 was of great resistance. On the other hand, when mixing ratio was lower than 1 : 8 epoxy resin mortar had very poor resistance, especially being poor resistant to organicacid. Therefore, for the structures requiring chemical resistance optimum mixing of epoxy resin mortar should be rich mixing ratio higher than 1: 4.

  • PDF