• 제목/요약/키워드: Rice tillering

검색결과 266건 처리시간 0.032초

벼 생육단계별 유기 또는 무기 셀레늄(Selenium)과 게르마늄(Germanium)의 처리효과 (Effect of Organic or Inorganic Selenium and Germanium on Growth Stage of Rice)

  • 김연수;천진혁;전영지;우현녕;김선주
    • 한국환경농학회지
    • /
    • 제38권2호
    • /
    • pp.96-103
    • /
    • 2019
  • BACKGROUND: This study was conducted to develop selenium (Se)- and germanium (Ge)-enriched rice by foliar spray application of organic or inorganic Se and Ge. METHODS AND RESULTS: The time and frequency of organic or inorganic Se and Ge treatment were performed at the five main growth stages as followings: effective tillering stage (E), maximum tillering stage (M), booting stage (B), heading stage (H), grain filling stage (G). The main treatment plots were consisted of (1) 'once' treatment (at each E, M, B, H, G stage, Se/Ge single apply), (2) 'twice I' (at H + G stages, organic or inorganic Se/Ge apply), (3) 'twice II' (at H + G stages, mixture apply of Se + Ge + pesticide). The organic or inorganic Se treatment concentration was 20 and 40 ppm, and the Ge was 50 and 100 ppm. The Se and Ge contents in rice grain (brown rice and polished rice) were analyzed by inductively coupled plasma (ICP). The highest Se content was noted in brown rice 'twice I' with Se 40 ppm (1394.06) at H + G stages, but the lowest was in 'once' with Se 40 ppm ($367.79{\mu}g{\cdot}kg^{-1}$) at B stage. The highest of Se content in polished rice was found in 'twice I' of Se 40 ppm (1090.25) at H + G stages, but the lowest was in 'once' with Se 40 ppm ($403.53{\mu}g{\cdot}kg^{-1}$) at E stage. On the other hand, The highest of Ge content in brown rice was found in 'twice I' with Ge 100 ppm (398.66) at H + G stages, but the lowest was in 'once' with Ge 100 ppm ($139.64{\mu}g{\cdot}kg^{-1}$) at B stage. The highest of Ge content in polished rice was found in 'twice I' of Ge 100 ppm (300.29) at H + G stages, but the lowest was in 'once' with Ge 100 ppm ($142.24{\mu}g{\cdot}kg^{-1}$) at B stage. CONCLUSION: Se and Ge contents both in brown rice and polished rice treated with organic Se and Ge forms were higher than those of inorganic Se and Ge. Overall results concluded that the supplementation of organic Se and Ge contents in brown and polished rice contents were comparatively higher than the inorganic Se and Ge. This is results also proved that the foliar spray application of organic Se and Ge has positive nutritive effect on the rice for regular consumption.

Rice Crop Monitoring Using RADARSAT

  • Suchaichit, Waraporn
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2003년도 Proceedings of ACRS 2003 ISRS
    • /
    • pp.37-37
    • /
    • 2003
  • Rice is one of the most important crop in the world and is a major export of Thailand. Optical sensors are not useful for rice monitoring, because most cultivated areas are often obscured by cloud during the growing period, especially in South East Asia. Spaceborne Synthetic Aperture Radar (SAR) such as RADARSAT, can see through regardless of weather condition which make it possible to monitor rice growth and to retrieve rice acreage, using the unique temporal signature of rice fields. This paper presents the result of a study of examining the backscatter behavior of rice using multi-temporal RADARSAT dataset. Ground measurements of paddy parameters and water and soil condition were collected. The ground truth information was also used to identify mature rice crops, orchard, road, residence, and aquaculture ponds. Land use class distributions from the RADARSAT image were analyzed. Comparison of the mean DB of each land use class indicated significant differences. Schematic representation of temporal backscatter of rice crop were plotted. Based on the study carried out in Pathum Thani Province test site, the results showed variation of sigma naught from first tillering vegatative phase until ripenning phase. It is suggested that at least, three radar data acquisitions taken at 3 stages of rice growth circle namely; those are at the beginning of rice growth when the field is still covered with water, in the ear differentiation period, and at the beginning of the harvest season, are required for rice monitoring. This pilot project was an experimental one aiming at future operational rice monitoring and potential yield predicttion.

  • PDF

질소 시비량에 따른 벼의 건물중, 질소 함량, 엽록소, 수확량 변이 지도 및 이들의 상관 관계에 관한 연구 (Dry Matter, Nitrogen Content, Chlorophyll and Yield Maps of Rice by Different Rates of Nitrogen Application and Their Correlations)

  • 이호상;김경욱
    • Journal of Biosystems Engineering
    • /
    • 제28권4호
    • /
    • pp.361-368
    • /
    • 2003
  • This study was intended to investigate the temporal and spatial variabilities of dry matter, nitrogen content, chlorophyll of paddy rice and yield caused by different rates of nitrogen application. An experimental field was divided into 45 plots of 3.48 ${\times}$ 12 m in size and application rate of nitrogen varied from 0 to 235% with an increment of 25% based on the standard rate of N-P$_2$O$_{5}$-K$_2$O=12-8-8 kg/10a. The measurements were made 8 times every 9-10 days after the transplanting. About 60 days after the transplanting, there exhibited little variabilities in the dry matter caused by different rates of nitrogen application. After that. however, there showed large variabilities and the dry matter increased with the application rate. The nitrogen content of paddy also increased with the application rate but it was inconsistent. After the tillering period, the nitrogen content remained constant. In the early stage of the tillering period the nitrogen content decreased in spite of increase in the dry matter. However. after a certain period of time it increased with the dry matter. There were little variabilities of chlorophyll after the transplanting. However, the SPAD increased with application rate of nitrogen as the paddy grew. After the tillering period SPAD was not affected by the different rates. More yield was obtained at the plots where larger nitrogen content was measured.d.

Competitive Performance of Hybrid Rice with Barnyardgrass

  • Lin, Wenxiong;Kim, Hak-Yoon;Shin, Dong-Hyun;Lee, In-Jung;Kim, Kil-Ung
    • 한국작물학회지
    • /
    • 제44권4호
    • /
    • pp.391-395
    • /
    • 1999
  • Barnyardgrass had relatively higher growth vigor at the earlier growth stage than inbred rice did, showing the 2 fold higher $\alpha$-amylase activity during the periods of germination and large leaf area Expansion with high net photosynthetic rate at the earlier autotrophic stage, but it performed weak growth at the late growth stage. However, the hlybrid rice Shanyou 63 had significantly higher $\alpha$-amylase activity and net photosynthetic rate than that of barnyardgrass, exhibiting heterosis for two physiologica1 traits during the germination (6~12 days) and autotrophic phase, respectively. Accordingly, hybrid rice, Shanyou 63, exhibited heterotic effect at the early growing stage when were presented with barnyardgrass. Shanyou 63 exhibited stronger tillering ability, faster leaf area expansion and higher net photosynthetic rate than those of barnyardgrass.

  • PDF

관개기 시험구 논에서의 오염물질의 농도특성 (Pollutant Concentrations at Experimental Paddy Plots during Irrigation Season)

  • 조재원;김진수;오광영;오승영
    • 한국농공학회논문집
    • /
    • 제48권3호
    • /
    • pp.97-106
    • /
    • 2006
  • The pollutant concentrations at experimental paddy plots with three (excessive, standard, reduced) different fertilization rates were investigated during 2001-2002 irrigation seasons. Mean concentrations of pollutants in ponded water were not significantly different among three experimental plots, but the T-N concentrations in percolated water significantly depended on fertilization rates. The T-N, T-P and $COD_{Cr}$, concentrations in ponded water during early irrigation season (late May to mid-June) were much higher than those during later irrigation season likely due to fertilization and low uptake by young rice crops. The T-N concentrations decreased but the concentrations of T-P and $COD_{Cr}$, increased three days after tillering fertilization. The removal rates of T-N by paddy plots were $0.13-0.16g/m^2{\cdot}d$ for an excessive fertilization plot, $0.08-0.25g/m^2{\cdot}d$ for a standard fertilization plot, and $0.03-0.34g/m^2{\cdot}d$ for a reduced fertilization plot three days after tillering fertilization. On the other hand, T-P and $COD_{Cr}$, were released three days after tillering fertilization.

벼 무논점파재배와 이앙재배의 생육, 출수 및 등숙특성 비교 (Comparisons of Growth, Heading and Grain Filling Characteristics between Wet-hill-seeding and Transplanting in Rice)

  • 손지영;이충근;김준환;윤영환;양원하;최경진;최민규;박홍규;고종철;김연규;김정곤;양운호
    • 한국작물학회지
    • /
    • 제57권2호
    • /
    • pp.151-159
    • /
    • 2012
  • 최근 개발된 직파재배의 일종인 무논점파는 무논점파기(8조식, $15{\times}28cm$, 주당 5~8립)를 이용하여 파종하므로 이앙재배의 재식거리와 유사한 밀도를 유지할 수 있는 장점이 있다. 벼 무논점파재배의 생육 및 출수특성과 출수일변동에 따른 등숙율과 완전립율의 변이를 알아보고자 국립식량과학원 답작과 논포장(수원)에서 2009년부터 2011년까지 3년동안 본 시험을 수행하였다. 1. 무논점파는 입모수는 기계이앙의 재식밀도와 큰 차이가 없었으나 분얼수가 많아 최고분얼기에 단위면적당 경수는 기계이앙의 1.3~2배였다. 최고분얼기 이후 분얼수는 감소해 성숙기 이삭수는 기계이앙과 큰 차이가 없었다. 2. 무논점파의 출수전 생육일수는 운광벼 84일, 호품벼 98일로 기계이앙의 파종일로부터 14일, 19일의 재배기간이 단축되었다. 3. 무논점파의 성숙기 생육특성은 간장과 수장 및 면적당 이삭수는 기계이앙과 차이가 없었다. 통계적 유의성은 없었으나 수당립수는 많아지는 경향이었다. 4. 출수기는 무논점파가 이앙보다 운광벼는 9일, 호품벼는 3일 늦어졌는데 호품벼의 연차간 변이가 작았다. 호품벼는 출수기간이 기계이앙보다 2일 짧아 동시출수율이 높았다. 4. 무논점파재배시 출수일변이에 따른 등숙율과 현미완 전립율은 기계이앙과 차이가 없거나 오히려 높은 것으로 나타났으나 조생종인 운광벼보다 중만생종인 호품벼의 연차간 변이가 적어 무논점파 안정성이 우수한 것으로 나타났다.

Changes in the metabolic profile and nutritional composition of rice in response to NaCl stress

  • Nam, Kyong-Hee;Kim, Do Young;Shin, Hee Jae;Pack, In-Soon;Kim, Chang-Gi
    • 농업과학연구
    • /
    • 제45권2호
    • /
    • pp.154-168
    • /
    • 2018
  • Salinity is a major abiotic stress that adversely affects crop productivity and quality. In this study, the metabolic profile and nutritional composition of rice in response to NaCl were analyzed. The plants were exposed to stressed or unstressed conditions, and their metabolic changes were examined in the shoots, roots, and grains collected at different growth stages. The levels of nutrients and anti-nutrients, including proximates, amino acids, fatty acids, minerals, vitamins, and phytic acid, were also determined for the grains. Application of NaCl significantly decreased the shoot and root growth and induced metabolic alterations at the tillering stage. During the heading stage, only the root metabolites were influenced by NaCl, and no metabolic variations related to salinity were found in the shoot, roots, and grains at the ripening stage. Nutritional analysis of the grain samples revealed that the amounts of linolenic acid and tricosanoic acid were significantly reduced while those of copper, sodium, and phytic acid were enhanced in response to stress. However, except for sodium, those differences were not great. Our results suggest that although NaCl-salinity influences the phenotypic and metabolic profiles of rice shoots and roots at the tillering stage, this impact becomes negligible as tissue development proceeds. This is especially true for the grains. Compositional analysis of the grains indicated that salinity induces some changes in fatty acids, minerals, and anti-nutrients.