• Title/Summary/Keyword: Rice husk

Search Result 232, Processing Time 0.031 seconds

A Strength on the Properties of Non-Cement Mortar containing Rice Husk Powder extracted from Digestion (증해 추출 왕겨 분말을 혼입한 무시멘트 모르타르의 강도 특성)

  • Cho, Sung-Eun;Cho, Sung-Won;Kim, Young-Su
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.05a
    • /
    • pp.225-226
    • /
    • 2021
  • Recently, environmental problems have emerged as a major issue all over the world due to an increase in carbon dioxide(CO2). The amount of CO2 generated during cement production accounts for 6% to 8% of domestic CO2 emissions and a solution to reduce CO2 emissions the construction industry is trying to use mineral admixtures to reduce cement. Since digestion has no firing process the advantage of it is that there is no air pollution to occur. In this study, we studied the compressive strength of binary non-cement mortar containing rice husk powder extracted from digestion by the ratio of 10%, 20%, 30%, 40%. As a result, the table flow was increased when the mixing rate of rice husk powder extracted from digestion was higher, and the highest compressive strength was shown when the rice husk powder extracted from digestion mixing rate was 10%.

  • PDF

Sulfuric Acid Catalytic Conversion to Levulinic Acid from Cellulosic Biomass (섬유소계 바이오매스로부터 황산 촉매를 이용한 레블린산 생산)

  • Hyeong-Gyun Ahn;Seungmin Lee;Yi-Ra Lim;Hyunjoon Kim;Jun Seok Kim
    • New & Renewable Energy
    • /
    • v.19 no.4
    • /
    • pp.11-19
    • /
    • 2023
  • Levulinic acid (LA) derived from cellulosic biomass, serves a crucial intermediate that can be used in various chemical conversions. This study focused on optimizing the production of LA using two types of pretreated rice husk (de-ashed and delignificated cellulosic biomass) in a batch reaction system through catalytic conversion with sulfuric acid. To determine the optimal conditions, the conversions of glucose and α-cellulose were examined to compare the effects of pretreatment on the rice husk. The experimental parameters covered a broad spectrum, including temperatures ranging from 140℃ to 200℃, a reaction time was up to 600 minutes, and a substrate to catalyst (acid solution) ratio of 100 g/L. The highest LA yield was 44.8%, achieved from de-ashed rice husk with 3.0 wt.% of sulfuric acid at 180℃ and with a reaction time of 180 minutes. In the case of the delignificated rice husk, a LA yield of 43.6% was obtained with 3.0 wt.% of sulfuric acid at 200℃ and with reaction time of 30 minutes.

An Experimental study on the Engineering Properties of Concrete with Rice-Husk Ash (왕겨재를 혼입(混入)한 콘크리트의 공학적(工學的) 특성(特性)에 관(關)한 실험적(實驗的) 연구(硏究))

  • Sung, Chan Yong;Yoo, Byong In;Kim, Kyung Tae;Jung, Hyun Jung;Kim, Young Ik
    • Korean Journal of Agricultural Science
    • /
    • v.24 no.2
    • /
    • pp.207-217
    • /
    • 1997
  • This study was performed to evaluate the engineering properties of rice-husk ash concrete using normal portland cement, natural aggregates and rice-husk ash. The following conclusions were drawn; 1. The unit weight was in the range of $2,216{\sim}2,325kgf/m^3$, the weights of those concrete were decreased 1~6% than that of the normal cement concrete, respectively. 2. The highest strength was achieved by 10% rice-husk ash filled rice-husk ash concrete, it was increased 8% by compressive strength, 17% by tensile strength and 18% by bending strength than that of the normal cement concrete, respectively. 3. The ultrasonic pulse velocity was in the range of 3,252~4,016 m/s, which was showed about the same compared to that of the normal cement concrete. The highest ultrasonic pulse velocity was showed by 10% rice-husk ash filled rice-husk ash concrete. 4. The dynamic modulus of elasticity was in the range of $242{\times}10^3{\sim}306{\times}10^3kgf/cm^2$, which was showed about the same compared to that of the normal cement concrete. The highest dynamic modulus was showed by 10% rice-husk ash filled rice-husk ash concrete. 5. The static modulus of elasticity was in the range of $185{\times}10^3{\sim}275{\times}10^3kgf/cm^2$, which was showed about the same compared to that of the normal cement concrete. The poisson's number of rice-husk ash concrete was less than that of the normal cement concrete. The dynamic modulus was increased approximately 11~30% than that of the static modulus. 6. The durability was increased with increase of the content of rice-husk ash. The durability was increased 1.3 times by 10% rice-husk ash, 1.6times by 20% rice-husk ash filled concrete than that of the normal cement concrete. respectively.

  • PDF

Extraction of Micro Filler from Bio-waste Material (Bio waste 소재로부터의 마이크로 필러 추출)

  • Nam, Gibeop;Song, Jung-Il
    • Composites Research
    • /
    • v.31 no.5
    • /
    • pp.209-214
    • /
    • 2018
  • This paper explain about the development of environmental friendly, low cost and stable supply material i.e., rice husk and shell were used as micro incorporating bio waste filler. Those were processed by ball mill and analyzed through micro observation by FE-SEM, EDS and particle size distribution. The obtained filler was mixed with epoxy resin for the manufacturing of CFRP composite and study tensile properties. In EDS analysis main contents of rice husk and rice husk ash are C, O and Si. When rice husk was burned C and Si ration were increased. Shell powder has C, O and Ca. It caused $CaCO_3$ from shell. Surface weighted mean of rice husk powder is $6.19{\mu}m$ and volume weighted mean is $14.77{\mu}m$. And it has rod type particles which caused hair and husk structure parts. Surface weighted mean of rice husk ash powder is $1.55{\mu}m$ and volume weighted means is $8.20{\mu}m$. Surface weighted mean of shell powder is $2.53{\mu}m$ and volume weighted mean is $5.79{\mu}m$. The tensile decreased with increasing the content of micro filler in CFRP composites. In case of rice husk, the significant decrement of tensile strength was observed. and in case of shell powder, there is no effect of changes take place in tensile strength.

Effect of Manufacturing Factors on Mechanical Properties of the Rice-husk Powder Composites (왕겨분말 복합재료의 기계적 특성에 미치는 제조인자의 영향)

  • Choi J.Y.;Wang Renliang;Yoon H.C.;Lim J.K.
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.7 s.250
    • /
    • pp.794-799
    • /
    • 2006
  • In recent years, the use of natural fiber as reinforcement in polymer composites to replace synthetic fiber such as glass fiber is receiving increasing attention. Because of increasing usage according to the high demand, the cost of thermoplastic has increased rapidly over the past decades. We used a thermoplastic polymer(polypropylene) as the matrix and a lignocellulosic material(rice-husk flour) as the reinforcement filler to prepare a particle-reinforced composite to examine the possibility of using lignocellulosic material as reinforcement filler and to determine data of test results for physical, mechanical and morphological properties of the composite according to the reinforcement filler content in respect to thermoplastic polymer, In this study, PLA/PP rice-husk fiber-reinforced thermoplastic composites that made by the hot press molding method according to appropriate manufacturing process was evaluated as mechanical properties.

Synthesis of Sphene - pink Pigment by Rice Husk Ash (왕겨재를 사용한 Sphene - pink 안료의 합성)

  • Joo, In-Don;Lee, Hyun-Soo;Lee, Byung-Ha
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.3
    • /
    • pp.237-243
    • /
    • 2010
  • This research examines using Rice Husk Ash, $Cr_2O_3$ in producing the pink-red color. It studies the formation of cassiterite and malayaite crystallites, the primary factors in producing the pink-red color, in relation to the application of $Cr_2O_3$ to examine its coloring mechanism. In addition, the research intends to identify the optimum synthesizing temperature and maintaining time for crystallization of malayaite, a stable pink-red colorization factor in high temperature glaze during $Cr_2O_3$-$SnO_2$-CaO-$SiO_2$ family pigment synthesis. The optimum substituting contents is Rice Husk Ash : Quartz = 1 : 2, and the optimum temperature is suggested at $1300^{\circ}C$ for 2 h based on analysis results by XRD, FT-IR, Raman microscope, SEM and UV-vis.

Thermal and Dynamic-Mechanical Characterization of Rice-Husk Filled Polypropylene Composites

  • Rosa, Simone M.L.;Nachtigall, Sonia M.B.;Ferreira, Carlos A.
    • Macromolecular Research
    • /
    • v.17 no.1
    • /
    • pp.8-13
    • /
    • 2009
  • Natural fiber-filled polymer composites have attracted great interest due to increasing environmental concerns and their low costs. In this study, the properties of rice husk flour-filled polypropylene (PP) were analysed in view of the large quantities of this agricultural product available as residue in Brazil. The rice husk flour (RHF) was characterized by SEM and particle size distribution. The properties of the composites were studied by MFI, DMA, DSC and TGA analyses. A commercial PP modified with maleic anhydride (MAPP) was used as coupling agent. It was verified that RHF decreased the MFI of the composites and that the coupling agent decreased it even more. The efficiency of MAPP was confirmed by the high storage modulus and high loss factor of the coupled composites.

Effect of Expanded Rice Husk Medium on Rice Seedling for Machine Transplanting

  • Ko Jonghan;Kim Doo Yeol;Sa Jong Gu;Lee Byun Woo;Lee Youn Su
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.50 no.1
    • /
    • pp.55-59
    • /
    • 2005
  • Rice farmers can save labor and expenses by using expanded rice husk (ERH) as a seedling medium since ERH is lighter and cheaper than other commercial seedling media (CSM). This study was carried out to develop a method for rice seedling cultivation using ERH as a seedling medium. It is suggested that a mixture of $60\%$ of ERH and $40\%$ of a CSM could be used as a seedling medium; the planting densities would be 240g per tray for infant seedlings and 200 g for young seedlings; and nitrogen (N) would be applied at a rate of 1g per tray for infant seedlings prior to planting and 2g per tray for young seedlings with division. Great care should be taken to use $CO(NH_2)_2$ as an N-source fertilizer. These results would lay a foundation for the rice seedling cultivation with ERH as a medium.

Evaluating germination of lettuce and soluble organic carbon leachability in upland sandy loam soil applied with rice husk and food waste biochar (왕겨 바이오차 및 음식물쓰레기 바이오차가 밭 사양토에서 상추발아 및 수용성 유기탄소 용출에 미치는 영향 평가)

  • Han, Kyung-Hwa;Zhang, Yong-Seon;Jung, Kang-Ho;Cho, Hee-Rae;Sonn, Yeon-Kyu
    • Korean Journal of Agricultural Science
    • /
    • v.41 no.4
    • /
    • pp.369-377
    • /
    • 2014
  • This study was carried out to evaluate the effect of rice husk (RHB) and food waste biochar (FWB) on upland soil with sandy loam texture, in terms of physico-chemical analysis, lettuce seed germination test, and orgainc carbon leaching experiment. RHB and FWB had different physico-chemical properties each other. Carbon to nitrogen ratio (C/N ratio) of RHB was 32, showing two times higher than that of FWB. FWB had high salt and heavy metal content, compared to RHB. This is probably due to different ingredients and production processing between two biochars each other. Results of germination test with Lettuce showed lower germination rate when FWB was applied because of higher salt concentration compared to control and RHB. Organic carbon leaching test using saturated soil column (${\Phi}75{\times}h75mm$) with $10MT\;ha^{-1}$ biochar application rate, showed higher saturated hydraulic conductivity in rice husk biochar treatment column, compared to control and food waste biochar treatment. The highest total organic carbon concentration in column effluent was lower than those in both of rice husk biochar and food waste biochar, whereas the differences was negligible after 9 pore volumes of effluent. Consequently, biochars from byproducts such as rice husk and food waste in sandy loam textured upland soil could enhance a buffer function such as reduction of leaching from soil, but the harmful ingredient to crops such as high salt and heavy metals could limit the agricultural use of biochars.

Effects of organic amendments on lettuce (Lactuca sativa L.) growth and soil chemical properties in acidic and non-acidic soils

  • Yun-Gu Kang;Jun-Yeong Lee;Jun-Ho Kim;Taek-Keun Oh;Yeo-Uk Yun
    • Korean Journal of Agricultural Science
    • /
    • v.50 no.4
    • /
    • pp.713-721
    • /
    • 2023
  • Soil acidification challenges global food security by adversely influences soil fertility and agricultural productivity. Carbonized agricultural residues present a sustainable and ecofriendly way to recycle agricultural waste and mitigate soil acidification. We evaluated the effects of organic amendments on lettuce growth and soil chemical properties in two soils with different pH levels. Carbonized rice husk was produced at 600℃ for 30 min and rice husk was treated at 1% (w·w-1). Carbonized rice husk increased soil pH, electrical conductivity, total carbon content, and nitrogen content compared with untreated and rice husk treatments. Furthermore, this study found that lettuce growth positively correlated with soil pH, with increasing soil pH up to pH 6.34 resulting in improved lettuce growth parameters. Statistical correlation analysis also supported the relationship between soil pH and lettuce growth parameters. The study findings showed that the use of carbonized rice husk increased the constituent elements of lettuce, such as carbon, nitrogen, and phosphate content. The potassium content of lettuce followed a similar trend; however, was higher in acidic soil than that in non-acidic soil. Therefore, improving the pH of acidic soil is essential to enhance agricultural productivity. It is considered advantageous to use agricultural residues following pyrolysis to improve soil pH and agricultural productivity.