• 제목/요약/키워드: Rice Husk Ash(RHA)

검색결과 31건 처리시간 0.02초

A Study on High Performance Fine-Grained Concrete Containing Rice Husk Ash

  • Le, Ha Thanh;Nguyen, Sang Thanh;Ludwig, Horst-Michael
    • International Journal of Concrete Structures and Materials
    • /
    • 제8권4호
    • /
    • pp.301-307
    • /
    • 2014
  • Rice husk ash (RHA) is classified as a highly reactive pozzolan. It has a very high silica content similar to that of silica fume (SF). Using less-expensive and locally available RHA as a mineral admixture in concrete brings ample benefits to the costs, the technical properties of concrete as well as to the environment. An experimental study of the effect of RHA blending on workability, strength and durability of high performance fine-grained concrete (HPFGC) is presented. The results show that the addition of RHA to HPFGC improved significantly compressive strength, splitting tensile strength and chloride penetration resistance. Interestingly, the ratio of compressive strength to splitting tensile strength of HPFGC was lower than that of ordinary concrete, especially for the concrete made with 20 % RHA. Compressive strength and splitting tensile strength of HPFGC containing RHA was similar and slightly higher, respectively, than for HPFGC containing SF. Chloride penetration resistance of HPFGC containing 10-15 % RHA was comparable with that of HPFGC containing 10 % SF.

Stabilized soil incorporating combinations of rice husk ash, pond ash and cement

  • Gupta, Deepak;Kumar, Arvind
    • Geomechanics and Engineering
    • /
    • 제12권1호
    • /
    • pp.85-109
    • /
    • 2017
  • The paper presents the laboratory study of clayey soil stabilized with Pond ash (PA), Rice husk ash (RHA), cement and their combination used as stabilizers to develop and evaluate the performance of clayey soil. The effect of stabilizer types and dosage on fresh and mechanical properties is evaluated through compaction tests, unconfined compressive strength tests (UCS) and Split tensile strength tests (STS) performed on raw and stabilized soil. In addition SEM (scanning electron microscopy) and XRD (X-ray diffraction) tests were carried out on certain samples in order to study the surface morphological characteristics and hydraulic compounds, which were formed. Specimens were cured for 7, 14 and 28 days after which they were tested for unconfined compression tests and split tensile strength tests. The moisture and density curves indicate that addition of RHA and pond ash results in an increase in optimum moisture content (OMC) and decrease in maximum dry density (MDD). The replacement of clay with 40% PA, 10% RHA and 4% cement increased the strength (UCS and STS) of overall mix in comparison to the mixes where PA and RHA were used individually with cement. The improvement of 336% and 303% in UCS and STS respectively has been achieved with reference to clay only. Developed stabilized soil mixtures have shown satisfactory strength and can be used for low-cost construction to build road infrastructures.

The applicability of Freundlich's isotherm model for the leaching of solidified hazardous waste using cementitious binders

  • Youn Jong Ho;Lee Heon Mo;Jeong Byung Gon;Chung Yong Hyun
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • 제2권1호
    • /
    • pp.9-19
    • /
    • 1998
  • A laboratory study was conducted to investigate the immobilization of the laboratory waste sludge, mainly from chemical oxygen demand (COD) waste, using cementitious binders. The binders were: Ordinary Portland Cement (OPC), and lime-Rice Husk Ash(RHA) cement. The economic evaluation was done for three different kinds of cementitious binders, namely, OPC, Portalnd Rice Husk Ash Cement (PRHAC) which contained rice husk ash 50 percent by dry weight, and lime-RHA cement. The result showed that lime-RHA cement was the cheapest. The applicability of Freundlich's desorption isotherm was studied to assess the teachability of sludges. The teachability of cement mortars was found to follow the desorption isotherms. Therefore, it was concluded that based on this test, the leachate concentrations of the solidified heavy metals could be predicted, approximately by the Freundlich's isotherm desorption modeling.

  • PDF

The applicability of Freundlichs isotherm model for the leaching of solidified hazardous waste using cementitious binders

  • Jong Ho Youn;Heo
    • 한국환경과학회지
    • /
    • 제2권1호
    • /
    • pp.9.2-19
    • /
    • 1993
  • A laboratory study was conducted to investigate the immobilization of the laboratory waste sludge, mainly from chemical oxygen demand (COD) waste, using cementitious binders. The binders were: Ordinary Portland Cement (OPC), and lime-Rice Husk Ash (RHA) cement. The economic evaluation was done for three different kinds of cementitious binders, namely, OPC, Portaind Rice Husk Ash Cement (PRHAC) which contained rice husk ash U percent by dry weight, and lime-RHA cement. The result showed that lime-RHA cement was the cheapest. The applicability of Freundlich's desorption isotherm was studied to assess the teachability of sludges. The teachability of cement mortars was found to follow the desorption isotherms. Therefore, it was concluded that based on this test, the leachate concentrations of the solidified heavy metals could be predicted, approximately by the Freundlich's isotherm desorption modeling.

  • PDF

Engineering behavior of expansive soils treated with rice husk ash

  • Aziz, Mubashir;Saleem, Masood;Irfan, Muhammad
    • Geomechanics and Engineering
    • /
    • 제8권2호
    • /
    • pp.173-186
    • /
    • 2015
  • The rapid urbanization in Pakistan is creating a shortage of sustainable construction sites with good soil conditions. Attempts have been made to use rice husk ash (RHA) in concrete industry of Pakistan, however, limited literature is available on its potential to improve local soils. This paper presents an experimental study on engineering properties of low and high plastic cohesive soils blended with 0-20% RHA by dry weight of soil. The decrease in plasticity index and shrinkage ratio indicates a reduction in swell potential of RHA treated cohesive soils which is beneficial for problems related to placing pavements and footings on such soils. It is also observed that the increased formation of pozzolanic products within the pore spaces of soil from physicochemical changes transforms RHA treated soils to a compact mass which decreases both total settlement and rate of settlement. A notable increase in friction angle with increase in RHA up to 16% was also observed in direct shear tests. It is concluded that RHA treatment is a cost-effective and sustainable alternate to deal with problematic local cohesive soils in agro-based developing countries like Pakistan.

Correlation study on microstructure and mechanical properties of rice husk ash-Sodium aluminate geopolymer pastes

  • Singh, N. Shyamananda;Thokchom, Suresh;Debbarma, Rama
    • Advances in concrete construction
    • /
    • 제11권1호
    • /
    • pp.73-80
    • /
    • 2021
  • Rice Husk Ash (RHA) geopolymer paste activated by sodium aluminate were characterized by X-ray diffractogram (XRD), scanning electron microscope (SEM), energy dispersion X-Ray analysis (EDAX)and fourier transform infrared spectroscopy (FTIR). Five series of RHA geopolymer specimens were prepared by varying the Si/Al ratio as 1.5, 2.0, 2.5, 3.0 and 3.5. The paper focuses on the correlation of microstructure with hardened state parameters like bulk density, apparent porosity, sorptivity, water absorption and compressive strength. XRD analysis peaks indicates quartz, cristobalite and gibbsite for raw RHA and new peaks corresponding to Zeolite A in geopolymer specimens. In general, SEM micrographs show interconnected pores and loosely packed geopolymer matrix except for specimens made with Si/Al of 2.0 which exhibited comparatively better matrix. Incorporation of Al from sodium aluminate were confirmed with the stretching and bending vibration of Si-O-Si and O-Si-O observations from the FTIR analysis of geopolymer specimen. The dense microstructure of SA2.0 correlate into better performance in terms of 28 days maximum compressive strength of 16.96 MPa and minimum for porosity, absorption and sorptivity among the specimens. However, due to the higher water demand to make the paste workable, the value of porosity, absorption and sorptivity were reportedly higher as compared with other geopolymer systems. Correlation regression equations were proposed to validate the interrelation between physical parameters and mechanical strength. RHA geopolymer shows comparatively lower compressive strength as compared to Fly ash geopolymer.

Influence of silpozz and rice husk ash on enhancement of concrete strength

  • Panda, K.C.;Prusty, S.D.
    • Advances in concrete construction
    • /
    • 제3권3호
    • /
    • pp.203-221
    • /
    • 2015
  • This paper presents the results of a study undertaken to investigate the enhancement of concrete strength using Silpozz and Rice Husk Ash (RHA). The total percentage of supplementary cementitious material (SCM) substituted in this study was 20%. Six different concrete mixes were prepared such as without replacement of cement with silpozz and RHA (0% silpozz and 0% RHA) is treated as conventional concrete, whereas in other five concrete mixes cement was replaced by 20% of silpozz and RHA as (0% silpozz and 20% RHA), (5% silpozz and 15% RHA), (10% silpozz and 10% RHA), (15% silpozz and 5% RHA) and (20% silpozz and 0% RHA) with decreasing water-binder (w/b) ratio i.e. 0.375, 0.325 and 0.275 and increasing super plasticiser dose. New generation polycarboxylate base water reducing admixture i.e., Cera Hyperplast XR-W40 was used in this study. The results of this research indicate that as w/b decreases, super plasticiser dose need to be increased so as to increase the workability of concrete. The effects of replacing cement by silpozz and RHA on the compressive strength, split tensile strength and flexural strength were evaluated. The concrete mixture with different combination of silpozz and RHA gives higher strength as compared to control specimen for all w/b ratios and also observed that the early age strength of concrete is more as compared to the later age strength. It is also observed that the strength enhancement of concrete mixture prepared with the combination of cement, silpozz and RHA is higher as compared to the concrete mixture prepared with cement and silpozz or cement and RHA.

Mechanical and microstructural study of rice husk ash geopolymer paste with ultrafine slag

  • Parveen, Parveen;Jindal, Bharat Bhushan;Junaid, M. Talha;Saloni, Saloni
    • Advances in concrete construction
    • /
    • 제8권3호
    • /
    • pp.217-223
    • /
    • 2019
  • This paper presents the mechanical and microstructural properties of the geopolymer paste which was developed by utilizing the industrial by-products, rice husk ash (RHA) and ultra-fine slag. Ultra-fine slag particles with average particle size in the range of 4 to 5 microns. RHA is partially replaced with ultra-fine slag at different levels of 0 to 50%. Sodium silicate to sodium hydroxide ratio of 1.0 and alkaline liquid to binder (AL/B) ratio of 0.60 is taken. Setting time, compressive, flexural strengths were studied up to the age of 90 days with different concentrations of NaOH. The microstructure of the hybrid geopolymer paste was studied by performing the SEM, EDS, and XRD on the broken samples. RHA based geopolymer paste blended with ultrafine slag resulted in high compressive and flexural strengths and increased setting times of the paste. Strength increased with the increase in NaOH concentration at all ages. The ultra-small particles of the slag acted as a micro-filler into the paste and enhanced the properties by improving the CASH, NASH, and CSH. The maximum compressive strength of 70MPa was achieved at 30% slag content with 16M NaOH. The results of XRD, SEM, and EDS at 30% replacement of RHA with ultra-fine slag densified the paste microstructure.

폴리프로필렌 섬유 보강 RHA콘크리트의 공학적 특성 (Engineering Properties of Concrete Enhanced with Rice Husk Ash and Polypropylene Fiber)

  • 이윤;박기태;권성준
    • 한국콘텐츠학회논문지
    • /
    • 제15권3호
    • /
    • pp.427-437
    • /
    • 2015
  • 콘크리트는 인장거동에 취약하므로 적절한 보강재를 필요로 한다. 또한 시멘트 클링커 생산시 발생하는 $CO_2$로 인해 시멘트 사용량을 줄이려는 연구가 시도되고 있다. 본 연구에서는 폴리프로필렌 섬유와 왕겨재를 혼입한 콘크리트의 공학적 성능을 평가하였다. 섬유재는 0.125~0.375%의 수준을, 왕겨재는 0~20% 치환률을 고려하여 콘크리트 배합을 준비하였으며, 압축강도, 쪼갬인장강도, 휨강도와 균열폭, 내충격성, 인발특성을 평가하였다. 또한 섬유재 혼입률, 섬유재 길이, 왕겨재의 혼입률을 고려하여 실험결과를 분석하였다. 인장특성에 대해서는 섬유재의 혼입량이, 강도특성에서는 왕겨재의 혼입률이 지배적이었으며, 0.125%의 섬유재 혼입과 10% 왕겨재 치환인 배합에서 가장 효과적인 공학적 특성이 발현되었다. 적절한 왕겨재 및 섬유재의 혼입은 다양한 공학적 특성을 강화시킬 뿐 아니라 친환경적인 측면에서도 유리하다고 판단된다.

Experimental study on geopolymer concrete prepared using high-silica RHA incorporating alccofine

  • Parveen, Parveen;Singhal, Dhirendra;Jindal, Bharat Bhushan
    • Advances in concrete construction
    • /
    • 제5권4호
    • /
    • pp.345-358
    • /
    • 2017
  • This paper describes the experimental investigation carried out to develop geopolymer concrete using rice husk ash (RHA) along with alccofine. The study reports the fresh and hardened properties of the geopolymer concrete (GPC) activated using alkaline solution. GPC were prepared using different RHA content (350, 375 and $400kg/m^3$), the molarity of the NaOH (8, 12 and 16M). The specimens were cured at $27^{\circ}C$ and $90^{\circ}C$. GPC was activated using NaOH, $Na_2SiO_3$, and alccofine. Prepared GPC samples were tested for compressive and splitting tensile strengths after 3, 7 and 28 days. RHA was suitable to produce geopolymer concrete. Results indicate that behavior of GPC prepared with RHA is similar to fly ash based GPC. Workability and strength can be improved by incorporating the alccofine. Further, alccofine and heat curing improve the early age properties of the GPC. Heat curing is responsible for the initial polymerization of GPC which leads to high workability and improved mechanical properties of the GPC. High strength can be achieved by using the high concentration alkaline solution in terms of molarity and at elevated heat curing. Further, RHA based geopolymer concrete has tremendous potential as a substitute for ordinary concrete.