1 |
Ganesan, K., Rajagopal, K. and Thangavel, K. (2008), "Rice husk ash blended cement: Assessment of optimal level of replacement for strength and permeability properties of concrete", Constr. Build. Mater., 22(8), 1675-1683.
DOI
|
2 |
Gartner, E. (2004), "Industrially interesting approaches to "low-CO 2" cements", Cement Concrete Res., 34(9), 1489-1498.
DOI
|
3 |
Hardjito, D., Wallah, S.E., Sumajouw, D.M. and Rangan, B.V. (2005), "Fly ash-based geopolymer concrete", Austr. J. Struct. Eng., 6(1), 77-86.
DOI
|
4 |
Jewell, S. and Kimball, S. (2014), "USGS mineral commodities summaries: 2014", US Geol. Survey, 12(12).
|
5 |
Jindal, B.B., Singhal, D., Sharma, S.K. and Parveen. (2017), "Prediction of mechanical properties of alccofine activated low calcium fly ash based geopolymer concrete", ARPN J. Eng. Appl. Sci., 12(9), 3022-3031.
|
6 |
Jindal, B.B., Singhal, D., Sharma, S.K. and Parveen. (2017), "Suitability of ambient-cured alccofine added low-calcium fly ash-based geopolymer concrete", Ind. J. Sci. Technol., 10(12),1-10.
|
7 |
Jindal, B.B., Anand, A. and Badal, A. (2016), "Development of high strength fly ash based geopolymer concrete with alccofine", IOSR J. Mech. Civ. Eng., 55-58.
|
8 |
Junaid, M.T., Kayali, O., Khennane, A. and Black, J. (2015), "A mix design procedure for low calcium alkali activated fly ash-based concretes", Constr. Build. Mater., 79, 301-310.
DOI
|
9 |
Kong, D.L., Sanjayan, J.G. and Sagoe-Crentsil, K. (2008), "Factors affecting the performance of metakaolin geopolymers exposed to elevated temperatures", J. Mater. Sci., 43(3), 824-831.
DOI
|
10 |
Lloyd, N. and Rangan, B. (2010), "Geopolymer concrete with fly ash", Proceedings of the 2nd International Conference on Sustainable Construction Materials and Technologies, UWM Centre for By-products Utilization.
|
11 |
Mehta, P.K. (1992), "Rice hush ash-a unique supplementary cementing material", Adv. Concrete Technol.
|
12 |
Malhotra, V. (1999), "Making concrete "greener" with fly ash", Concrete Int., 21(5), 61-66.
|
13 |
Malhotra, V. (2002), "Introduction: Sustainable development and concrete technology", Concrete Int., 24(7).
|
14 |
McLellan, B.C., Williams, R.P., Lay, J., Van Riessen, A. and Corder, G.D. (2011), "Costs and carbon emissions for geopolymer pastes in comparison to ordinary portland cement", J. Clean. Prod., 19(9), 1080-1090.
DOI
|
15 |
Nath, P., Sarker, P.K. and Rangan, V.B. (2015), "Early age properties of low-calcium fly ash geopolymer concrete suitable for ambient curing", Proc. Eng., 125, 601-607.
DOI
|
16 |
Siddique, R., Singh, K., Singh, M., Corinaldesi, V. and Rajor, A. (2016), "Properties of bacterial rice husk ash concrete", Constr. Build. Mater., 121, 112-119.
DOI
|
17 |
Parveen, A.S. and Singhal, D. (2013), "Mechanical properties of geopolymer concrete: A state of the art report", Proceedings of the 5th Asia And Pacific Young Researchers And Graduate Symposium, Jaipur, India.
|
18 |
Pavithra, P., Reddy, M.S., Dinakar, P., Rao, B.H., Satpathy, B. and Mohanty, A. (2016), "A mix design procedure for geopolymer concrete with fly ash", J. Clean. Prod., 133, 117-125.
DOI
|
19 |
Sanusi, G., Dauda, D. and Khalil, I. (2014), "An assessment of the durability properties of binary concrete containing rice husk ash", Civ. Environ. Res., 6, 53-67.
|
20 |
Slaty, F., Khoury, H., Rahier, H. and Wastiels, J. (2015), "Durability of alkali activated cement produced from kaolinitic clay", Appl. Clay Sci., 104, 229-237.
DOI
|
21 |
BIS 516 (1959), Methods of Tests for Strength of Concrete, New Delhi, India.
|
22 |
Wongpa, J., Kiattikomol, K., Jaturapitakkul, C. and Chindaprasirt, P. (2010), "Compressive strength, modulus of elasticity, and water permeability of inorganic polymer concrete", Mater. Des., 31(10), 4748-4754.
DOI
|
23 |
Yip, C.K., Lukey, G.C., Provis, J.L. and Van Deventer, J.S. (2008), "Effect of calcium silicate sources on geopolymerisation", Cement Concrete Res., 38(4), 554-564.
DOI
|
24 |
Bharat, B., Jindal, D.S., Sanjay, K., Deepankar, K.A. and Parveen. (2017), "Improving compressive strength of low calcium fly ash geopolymer concrete with alccofin", Adv. Concrete Constr., 5(1), 17-29.
DOI
|
25 |
BIS 1199 (1959), Method of Sampling and Analysis of Concrete, New Delhi, India.
|
26 |
BIS 2386 (1963), Methods of Test for Aggregates Concrete-Part I Particle Size and Shape, New Delhi, India.
|
27 |
BIS 383 (1970), Specification for Coarse and Fine Aggregates from Natural Sources for Concrete, New Delhi, India.
|
28 |
BIS 456 (2000), Plain and Reinforced Concrete-Code of Practice, New Delhi, India.
|
29 |
BIS 5816 (1999), Indian Standard Splitting Tensile Strength of Concrete-Method of Test, New Delhi, India.
|
30 |
BIS 7320 (1974), Indian Standard Specification for Concrete Slump Test Apparatus, New Delhi, India.
|
31 |
BIS 9103 (1999), Concrete Admixtures-Specification, New Delhi, India.
|
32 |
Bouzoubaâ, N. and Fournier, B. (2001), "Concrete incorporating rice-husk ash: Compressive strength and chloride-ion penetrability", Mater. Technol. Lab., 5, 1-17.
|
33 |
Chindaprasirt, P., Chareerat, T. and Sirivivatnanon, V. (2007), "Workability and strength of coarse high calcium fly ash geopolymer", Cement Concrete Compos., 29(3), 224-229.
DOI
|
34 |
Deb, P.S., Nath, P. and Sarker, P.K. (2014), "The effects of ground granulated blast-furnace slag blending with fly ash and activator content on the workability and strength properties of geopolymer concrete cured at ambient temperature", Mater. Des., 62, 32-39.
DOI
|
35 |
Deb, P.S., Nath, P. and Sarker, P.K. (2013), "Properties of fly ash and slag blended geopolymer concrete cured at ambient temperature", Proceedings of the 7th International Structural Engineering and Construction Conference, Honolulu, U.S.A.
|