• 제목/요약/키워드: Rib-Web Shape Forging

검색결과 17건 처리시간 0.021초

평면변형 단조에서의 예비성형체 설계에 관한 연구 (A Study on Preform Design in Plane-Strain Forging)

  • 이종헌;강건;배춘익
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제23권5호
    • /
    • pp.678-685
    • /
    • 1999
  • A UBET program is developed for determining flash the optimum sizes of preform and initial billet in plane-strain closed-die forging. The program consists of forward and backward tracing processes. In the forward program, flash, die filling and forging load are predicted. In backward tracing process the optimum dimensions of initial billet and preform are determined from the final-shape data based on flash design. Experiments are carried out with pure plasticine billets ar room temperature. The theoretical predictions of forging load and flow pattern are in good agree-ment with the experimental results.

  • PDF

상계요소법을 이용한 평면변형 단조에 관한 연구 (A study on plane-strain forging using UBET)

  • 이종헌;김진욱
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제22권1호
    • /
    • pp.7-15
    • /
    • 1998
  • An upper bound elemental technique(UBET) program has been developed to analyze forging load, die-cavity filling and effective strain distribution for flash and flashless forgings. The program consists of forward and backward tracing processes. In the forward program, flash, die filling and forging load are predicted. In backward tracing process, the optimum dimensions of initial billet in conventional forging are determined from the final-shape data based on flash design. And the analysis is described for merit of flashless precision forging. Experiments are carried out with pure plasticine billets at room temperature. The theoretical predictions of forging load and flow pattern are in good agreement with the experimental results.

  • PDF

비축대칭 형상의 밀폐형 링 단조에 관한 연구 (A Study on the Non-Axisymmetric Closed-Die Ring Forging)

  • 배원병;김영호;이종헌;이원희
    • 소성∙가공
    • /
    • 제3권2호
    • /
    • pp.202-214
    • /
    • 1994
  • An upper bound elemental technique(UBET) is applied to predict the forging load and die-cavity filling for non-axisymmetric ring forging. In order to analyze the process easily, it is suggested that the finial product is divided into three different deformation regions. That is axisymmetric part in corner, lateral plane-strain part and shear deformation on boundaries between them. the place-strain and axisymmetric part are combinded by building block method. Also the total energy is computered through combination of three deformation part. Experiments have been carried out with pure plasticine billets at room temperature. The theoretical predictions of the forging load and the flow pattern are in good agreement with the experimental results.

  • PDF

UBET를 이용한 비축대칭 링 단조에 관한 연구 (A Study on Non-Axisymmetric Ring Forging Using UBET)

  • 배원경;김영호;이종헌;이원희
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1994년도 춘계학술대회 논문집
    • /
    • pp.63-70
    • /
    • 1994
  • An upper bound elemental technique(UBET) is applied to predict forging load and die-cavity filling for non-axisymmetric ring forging. The finial product is divided into three different deformation regions. That is axisymmetric part in corner, lateral plane-strain part and shear deformation on boundaries between them. The plane-strain and axisymmetric part are combinded by building block method. Also the total energy is computered through combination of three deformation part. Experiments have been carried out with pure plasticine billets at room temperature. The theoretical predictions of the forging load and the flow pattern are in good agreement with the experimental results.

  • PDF

UBET를 이용한 축대칭 단조공정에서의 최적설계에 관한 연구 (A study on optimal design in axisymmetric forging processes using UBET)

  • 김영호;배원병;김진훈;김헌영
    • 대한기계학회논문집
    • /
    • 제18권5호
    • /
    • pp.1117-1125
    • /
    • 1994
  • A UBET program is developed for determining the optimum sizes of preform of a rib-web part in axisymmetric closed-die forging. The program consists of forward and backward tracing processes. In forward process, material flow, degree of die filling, and forging load are predicted. In backward tracing process, the optimum dimensions of initial billet and preform are determined from the final-shape data without flash. The above program is easy to handle input data with and is convenient to visualize the whole process of closed-die forging with. Experiments are carried out with pure plasticine billets at room temperature. The theoretical predictions of the forging load and the flow pattern are in good agreement with the experimental results.

플래시 없는 비축대칭 단조에 관한 연구 (A Study on Flashless Non-Axisymmetric Forging)

  • 배원병;김영호;최재찬;이종헌;김동영
    • 한국정밀공학회지
    • /
    • 제12권3호
    • /
    • pp.42-52
    • /
    • 1995
  • An UBET(Upper Bound Elemental Techniquel) program has been developed to analyze forging load, die-cavity filling and effective strain distribution for flashless non-axisymmetric forging. To analyze the process easily, it is suggested that the deforma- tion is divided into two different parts. Those are axisymmetric part in corner and plane- strain part in lateral. The total power consumption is minimized through combination of two deformation parts by building block method, form which the upper-bound forging load, the flow pattern, the grid pattern, the velocity distribution and the effective strain are deter- mined. To show the merit of flashless forging, the results of flashless and flash-forging processes are compared through theory and experiment. Experiments have been carried out with plasticine billets at room temperature. The theoretical predictions of the forging load and the flow pattern are in good agrement with the experimental results.

  • PDF

비축대칭 형상의 단조 공정 설계에 관한 연구 (A Study on the Process Design of Non-Axisymmetric Forging Components)

  • Kim, Y.H.;Bae, W.B.;Park, J.H.
    • 한국정밀공학회지
    • /
    • 제12권10호
    • /
    • pp.57-68
    • /
    • 1995
  • An upper bound elemental technique (UBET) program has been developed to predict forging load, die-cavity filling, preform in non-axisymmetric forging. To analyze the process easily, it is suggested that the deformation is divided into two different parts. Those are axisymmetric part in corner, plane-strain part in lateral. The plane-strain and axisymmetric parts are combined by building block method. And the total energy is computed through combination of three deformation parts. A dumbbell-type preform has been obtained from height and volumetric compensations of the billet based on the backward simulation. Experimetns have been carried out with pure plasticine at room temperature. Theoretical predictions are in good agreement with expereimental results.

  • PDF