• Title/Summary/Keyword: Rhodobacter

Search Result 113, Processing Time 0.022 seconds

The improvement of productivity of a photosynthetic purple bacterium, Rhodobacter sphaeroides by manipulating the photosynthetic apparatus (광합성 기구 조작을 통한 비유황 자색 광합성 세균, Rhodobacter sphaeroides의 생산성 증대)

  • Kim, Nak-Jong;Lee, Cheol-Gyun
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.04a
    • /
    • pp.189-192
    • /
    • 2000
  • The objective of this study was to investigate the effect of high content of light-absorbing pigments on overall photosynthetic efficiency in high density microalgal cultures. The light harvesting complex II (LHC II) regulating gene of Rhodobacter sphaeroides, photosynthetic purple bacterium, was removed to construct a mutant strain that had less pigment content. The mutant and wild type strains were cultured under various light intensity by adjusting the distance from the light source. The productivity of the mutant strain was higher at high light intensity (over 118 ${\mu}E/m^2/s$) compared with one of the wild type , and was lower at low light intensity (34 ${\mu}E/m^2/s$). Especially, the concentration of LHC II mutant strain was 56% higher at 118 ${\mu}E/m^2/s$. The reduction of per cell pigment contents in the mutant strain lessened the degree of the mutual shading and thus enhanced the overall photosynthetic efficiency.

  • PDF

Hydrogen Production from Wastewater in Takju Manufacturing Factory by Microbial Consortium (탁주제조공장 폐수로부터 혼합균주에 의한 수소생산)

  • Lee, Ki-Seok;Bae, Sang-Ok;Kang, Chang-Min;Chung, Seon-Yong
    • KSBB Journal
    • /
    • v.23 no.3
    • /
    • pp.199-204
    • /
    • 2008
  • Culture conditions for biological hydrogen production were investigated in wastewater of Takju manufacturing factory. Rhodobacter spaeroides KCTC1425, photosynthesis bacteria, and Enterobacter cloacae YJ-1, anaerobic bacteria were used. The hydrogen production were $195.3m{\ell}{\cdot}H_2/{\ell}$ broth for Rhodobacter spaeroides KCTC1425 and $271.8m{\ell}{\cdot}H_2/{\ell}$ broth for Enterobacter cloacae YJ-1 during 36 h. The hydrogen production increased with light intensity, and were highest over 12000Lux. In mixed culture of Rhodobacter spaeroides KCTC1425 and Enterobacter cloacae Y J-1, the optimum mixing ratio of hydrogen production was 20 and 80. Adding volume of yeast extract for maximum hydrogen production was 15 $g/{\ell}$, but there was no effect over that. $Na_2MoO_4$ was most effective among the inorganic salts, and the optimum volume was 0.4 $g/{\ell}$. In semi-continuous culture, total hydrogen production was $13086m{\ell}{\cdot}H_2/{\ell}$ broth for 144 h with operating period of 24 h.

Cloning and Expression of the Rhodobacter capsulatus hemA Gene in E. coli for the Production of S-Aminolevulinic Acid

  • KANG , DAE-KYUNG;KIM, SANG-SUK;CHI, WON-JAE;HONG, SOON-KWANG;KIM, HA-KUN;KIM, HYUN-UK
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.6
    • /
    • pp.1327-1332
    • /
    • 2004
  • The hemA gene encoding 5-aminolevulinic acid synthase (ALAS) was cloned from Rhodobacter capsulatus, and its nucleotide sequence was determined. DNA sequencing data revealed one open reading frame coding for a protein with 401 amino acids that displayed high similarity to the amino acid sequences of other known ALASs. The hemA gene was then cloned and expressed under the control of constitutive promotor in E. coli. The recombinant E. coli strain was able to accumulate 5-aminolevulinic acid to 21 mM in the liquid medium supplemented with 45 mM glycine and 120 mM succinate. In addition, a marked effect of the pH of the culture medium on ALA production was observed, and the optimum pH for culture medium was determined to be 5.8-6.3.

Characterization of a Photosynthetic Mutant Selected by Increased Formation of Poly-3-Hydroxybutyrate in Rhodobacter sphaeroides

  • Lee, Il-Han;Kho, Dhong-Hyo;Lee, Jeong-Kug
    • Journal of Microbiology and Biotechnology
    • /
    • v.8 no.6
    • /
    • pp.714-718
    • /
    • 1998
  • Various mutants either lacking or having decreased levels of light-harvesting complexes and reaction center complex were obtained with a high frequency by an increased formation of poly-3-hydroxybutyrate (PHB) in Rhodobacter sphaeroides. One of the photosynthesis-defective mutants, PY-17, which was devoid of any of the light-harvesting complexes (B800-850, B875) as well as the reaction center complex, was analyzed further. The mutant showed substantial transcription of the puhA, pufKBALMX, and pucBAC operons coding for the structural proteins of the photosynthetic complexes although each of the activities was lower than that of the wild type. Translation of the pufKBALMX and pucBAC operons were also active in the mutant although with activities different from the corresponding one of the wild type. From these results the mutation appears to exert its effect at the post-translational level of the photosynthetic complex assembly. Complementation of the photosynthesis-defective phenotype of the mutant was achieved with an about 12-kb DNA region containing the puhA gene. The relationship between the formation of PHB and photosynthetic complexes is discussed.

  • PDF

Expression Analysis of ${\beta}$-Ketothiolase and Acetoacetyl-CoA Reductase of Rhodobacter sphaeroides

  • KHO, DHONG HYO;CHEOL YUN JEONG;JEONG JUG LEE
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.6
    • /
    • pp.1031-1037
    • /
    • 2001
  • By a sequential action of ${\beta}$-ketothiolase and acetoacetyl-CoA reductase, two molecules of acetyl-CoA re converted into D-3-hydroxybutyryl-CoA, a substrate for PHB synthase to form poly-3-hydroxybutyryl-CoA, a substrate for PHB synthase to form poly-3-hydroxybutyrate (PHB) of rhodobacter sphaeroides. The ${\beta}$-ketothiolase gene, phbA, and acetoacetyl-CoA reductase gene, phbB, were cloned and analyzed for their expression. Enzyme activities of ${\beta}$-ketothiolase and acetoacetyl-CoA reductase showed constitutive levels during aerobic and photoheterotrophic growth of R. sphaeroides. In addition, no difference of each enzyme activity was observed between cells grown aerobically and photoheterotrophically. The constitutive level of the enzyme activities are regulated according to the growth phases along with growth conditions. Thus, phbAB expression is not determinative in regulating the PB content. On the other hand, phbA-deleted cell AZI accumulated only $10\%$ PHB of the wild-type, and an elevated dosage of phbAB in trans in R. sphaeroides resulted in a higher content of PHB, indicating that phbAB codes for the enzymes responsible for providing the main supply of subsyrate for PHB synthase. PHB formation by an alternative pathway that does not does not depend on the phbA-and phbB-coding enzymes is also proposed.

  • PDF

Improvement of Photoheterotrophic Hydrogen Production of Rhodobacter sphaeroides by Removal of B800-850 Light-Harvesting Complex

  • KIM EUI-JIN;YOO SANG-BAE;KIM MI-SUN;LEE JEONG K.
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.5
    • /
    • pp.1115-1119
    • /
    • 2005
  • The photoheterotrophic $H_2$ production of Rhodobacter sphaeroides was significantly increased through disruption of the genes coding for uptake hydrogenase and poly-${\beta}$-hydroxybutyrate (PHB) synthase (Lee et al., Appl. Microbiol. Biotechnol. 60: 147-153, 2002). In this work, we further removed the B800-850 light-harvesting (LH) complex from the strain and found an increase in $H_2$ production at the light-saturating cell growth (${\ge}10$ Watts $[W]/m^2$). Neither the mutant nor the wild-type produced more $H_2$ at the brighter light. Accordingly, light does not appear to be limited for the $H_2$ production by the presence of B800-850. However, increase in the level of the spectral complexes resulted in decrease of $H_2$ production. Thus, although the B875 is essential for light harvesting, the consumption of cellular energy for the synthesis of B800-850 and the surplus LH complexes may reduce the energy flow into the $H_2$ production of R. sphaeroides.

Pigment Reduction to Improve Photosynthetic Productivity of Rhodobacter sphaeroides

  • Kim, Nag-Jong;Lee, Jeong-Kug;Lee, Choul-Gyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.3
    • /
    • pp.442-449
    • /
    • 2004
  • Improving the light utilization efficiency of photosynthetic cells in photobioreactors (PBRs) is a major topic in algal biotechnology. Accordingly, in the current study we investigated the effect and suitability of photosynthetic pigment reduction for improving light utilization efficiency. The light-harvesting complex II (LH-II) genes of Rhodobacter sphaeroides were removed to construct a mutant strain with less pigment content. The mutant strain exhibited a slower growth rate than the wild-type under a low light intensity, while the mutant grew faster under a high light intensity. In addition, the specific absorption coefficient was lower in the mutant due to its reduced pigment content, thus it seemed that light penetrated deeper into its culture broth. However, the distance (light penetration depth) from the surface of the PBR to the compensation point did not increase, due to an increase in the compensation irradiance of the mutant strain. Experimental data showed that a reduced photosynthetic pigment content, which lessened the photoinhibition under high-intensity light, helped the volumetric productivity of photosynthetic microorganisms.

Optimization of Influencing Factors on Biomass Accumulation and 5-Aminolevulinic Acid (ALA) Yield in Rhodobacter sphaeroides Wastewater Treatment

  • Liu, Shuli;Li, Xiangkun;Zhang, Guangming;Zhang, Jie
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.11
    • /
    • pp.1920-1927
    • /
    • 2015
  • This study aimed to optimize four factors affecting biomass accumulation and 5-aminolevulinic acid (ALA) yield together with pollutants removal in Rhodobacter sphaeroides wastewater treatment. Results showed that it was feasible to produce biomass and ALA in R. sphaeroides wastewater treatment. Microaerobic, 1,000-3,000 lux, and pH 7.0 were optimal conditions for the highest ALA yield of 4.5 ± 0.5 mg/g-biomass. Under these conditions, COD removal and biomass production rate were 93.3 ± 0.9% and 31.8 ± 0.5 mg/l/h, respectively. In addition, trace elements Fe2+, Mg2+, Ni2+, and Zn2+ further improved the ALA yield, COD removal, and biomass production rate. Specifically, the highest ALA yield (12.5 ± 0.6 mg/g-biomass) was achieved with Fe2+ addition.

Phosphatidylcholine is Required for the Efficient Formation of Photosynthetic Membrane and B800-850 Light-Harvesting Complex in Rhodobacter sphaeroides

  • Kim, Eui-Jin;Kim, Mi-Sun;Lee, Jeong-K.
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.2
    • /
    • pp.373-377
    • /
    • 2007
  • No phosphatidylcholine (PC) was detected in the membrane of Rhodobacter sphaeroides pmtA mutant (PmtAl) lacking phosphatidylethanolamine (PE) N-methyltransferase, whereas PE in the mutant was increased up to the mole % comparable to the combined level of PE and PC of wild type. Neither the fatty acid composition nor the fluidity of membrane was altered by pmtA mutation. Consistently, aerobic and photoheterotrophic growth of PmtAl were not different from wild type. However, PmtAl showed an extended lag phase (15 h) after the growth transition from aerobic to photoheterotrophic conditions, indicating the PC requirement for the efficient formation of intracytoplasmic membrane (ICM). Interestingly, the B800-850 complex of PmtAl was decreased more than twofold in comparison with wild type, whereas the level of the B875 complex comprising the fixed photosynthetic unit was not changed. Since puc expression is not affected by pmtA mutation, PC appears to be required for the proper formation of the B800-850 complex in the ICM of R. sphaeroides.

Biological Treatment of Nutrients and Heavy Metals in Synthetic Wastewater Using a Carrier Attached to Rhodobacter blasticus

  • Kim, Deok-Won;Park, Ji-Su;Oh, Eun-Ji;Yoo, Jin;Kim, Deok-Hyeon;Chung, Keun-Yook
    • Applied Chemistry for Engineering
    • /
    • v.33 no.6
    • /
    • pp.666-674
    • /
    • 2022
  • The removal efficiencies of nutrients (N and P) and heavy metals (Cu and Ni) by Rhodobacter blasticus and R. blasticus attached to polysulfone carriers, alginate carriers, PVA carriers, and PVA + zeolite carriers in synthetic wastewater were compared. In the comparison of the nutrient removal efficiency based on varying concentrations (100, 200, 500, and 1000 mg/L), R. blasticus + polysulfone carrier treatment showed removal efficiencies of 98.9~99.84% for N and 96.92~99.21% for P. The R. blasticus + alginate carrier treatment showed removal efficiencies of 88.04~97.1% for N and 90.33~97.13% for P. The R. blasticus + PVA carrier treatment showed removal efficiencies of 18.53~44.25% for N and 14.93~43.63% for P. The R. blasticus + PVA + zeolite carrier treatment showed removal efficiencies of 26.65~64.33% for N and 23.44~64.05% for P. In addition, at the minimum inhibitory concentration of heavy metals, R. blasticus (dead cells) + polysulfone carrier treatment showed removal efficiencies of 7.77% for Cu and 12.19% for Ni. Rhodobacter blasticus (dead cells) + alginate carrier treatment showed removal efficiencies of 25.83% for Cu and 31.12% for Ni.