Browse > Article
http://dx.doi.org/10.4014/jmb.1505.05086

Optimization of Influencing Factors on Biomass Accumulation and 5-Aminolevulinic Acid (ALA) Yield in Rhodobacter sphaeroides Wastewater Treatment  

Liu, Shuli (School of Municipal and Environmental Engineering, Harbin Institute of Technology)
Li, Xiangkun (School of Municipal and Environmental Engineering, Harbin Institute of Technology)
Zhang, Guangming (School of Municipal and Environmental Engineering, Harbin Institute of Technology)
Zhang, Jie (School of Municipal and Environmental Engineering, Harbin Institute of Technology)
Publication Information
Journal of Microbiology and Biotechnology / v.25, no.11, 2015 , pp. 1920-1927 More about this Journal
Abstract
This study aimed to optimize four factors affecting biomass accumulation and 5-aminolevulinic acid (ALA) yield together with pollutants removal in Rhodobacter sphaeroides wastewater treatment. Results showed that it was feasible to produce biomass and ALA in R. sphaeroides wastewater treatment. Microaerobic, 1,000-3,000 lux, and pH 7.0 were optimal conditions for the highest ALA yield of 4.5 ± 0.5 mg/g-biomass. Under these conditions, COD removal and biomass production rate were 93.3 ± 0.9% and 31.8 ± 0.5 mg/l/h, respectively. In addition, trace elements Fe2+, Mg2+, Ni2+, and Zn2+ further improved the ALA yield, COD removal, and biomass production rate. Specifically, the highest ALA yield (12.5 ± 0.6 mg/g-biomass) was achieved with Fe2+ addition.
Keywords
Rhodobacter sphaeroides; 5-aminolevulinic acid; influencing factors; optimization; wastewater treatment;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Carmichael W. 1992. Cyanobacteria secondary metabolites -the cyanotoxins. J. Appl. Bacteriol. 72: 445-459.   DOI
2 Choi HP, Hong JW, Rhee KH, Sung HC. 2004. Cloning, expression, and characterization of 5-aminolevulinic acid synthase from Rhodopseudomonas palustris KUGB306. FEMS Microbiol. Lett. 236: 175-181.   DOI
3 Choorit W, Saikeur A, Chodok P, Prasertsan P, Kantachote D. 2011. Production of biomass and extracellular 5-aminolevulinic acid by Rhodopseudomonas palustris KG31 under light and dark conditions using volatile fatty acid. J. Biosci. Bioeng. 111: 658-664.   DOI
4 Chung S-Y, Seo K-H, Rhee JI. 2005. Influence of culture conditions on the production of extracellular 5-aminolevulinic acid (ALA) by recombinant E. coli. Process Biochem. 40: 385-394.   DOI
5 Hunter CN, Daldal F, Thurnauer MC, Beatty JT. 2008. The Purple Phototrophic Bacteria. Springer, Berlin.
6 Clesscerl LS, Greenberg AE, Eaton AD. 1998. Standard Methods for the Examination of Water and Wastewater, 20th Ed. APHA-AWWA-WEF, Washington, DC.
7 Dubois DY, Blais SP, Huot JL, Lapointe J. 2009. A C-truncated glutamyl-tRNA synthetase specific for tRNAGlu is stimulated by its free complementary distal domain: mechanistic and evolutionary implications. Biochemistry 48: 6012-6021.   DOI
8 Freist W, Gauss D, Söll D, Lapointe J. 1997. Glutamyl-tRNA sythetase. Biol. Chem. 378: 1313-1329.
9 Ishii K, Hiraishi A, Arai T, Kitamura H. 1990. Light-dependent porphyrin production by suspended and immobilized cells of Rhodobacter sphaeroides. J. Ferment. Bioeng. 69: 26-32.   DOI
10 Jeya M, Moon H-J, Lee J-L, Kim I-W, Lee J-K. 2010. Current state of coenzyme Q10 production and its applications. Appl. Microbiol. Biotechnol. 85: 1653-1663.   DOI
11 Kamiyama H, Hotta Y, Tanaka T, Nishikawa S, Sasaki K. 2000. Production of 5-aminolevulinic acid by a mutant strain of a photosynthetic bacteria. Seibutu Kougaku 78: 48-55.
12 Kang Z, Zhang J, Zhou J, Qi Q, Du G, Chen J. 2012. Recent advances in microbial production of δ-aminolevulinic acid and vitamin B12. Biotechnol. Adv. 30: 1533-1542.   DOI
13 Kien NB, Kong I-S, Lee M-G, Kim JK. 2010. Coenzyme Q10 production in a 150-L reactor by a mutant strain of Rhodobacter sphaeroides. J. Ind. Microbiol. Biotechnol. 37: 521-529.   DOI
14 Kuo FS, Chien YH, Chen CJ. 2012. Effects of light sources on growth and carotenoid content of photosynthetic bacteria Rhodopseudomonas palustris. Bioresour. Technol. 113: 315-318.   DOI
15 Lorrungruang C, Martthong J, Sasaki K, Noparatnaraporn N. 2006. Selection of photosynthetic bacterium Rhodobacter sphaeroides 14F for polyhydroxyalkanoate production with two-stage aerobic dark cultivation. J. Biosci. Bioeng. 102: 128-131.   DOI
16 Liu B-F, Ren N-Q, Ding J, Xie G-J, Guo W-Q. 2009. The effect of Ni2+, Fe2+ and Mg2+ concentration on photo-hydrogen production by Rhodopseudomonas faecalis RLD-53. Int. J. Hydrogen Energy 34: 721-726.   DOI
17 Madukasi EI, Dai X, He C, Zhou J. 2010. Potentials of phototrophic bacteria in treating pharmaceutical wastewater. Int. J. Environ. Sci. Technol. 7: 165-174.   DOI
18 Liu XX, Wang L, Wang YJ, Cai LL. 2010. D-Glucose enhanced 5-aminolevulinic acid production in recombinant Escherichia coli culture. Appl. Biochem. Biotechnol. 160: 822-830.   DOI
19 Liu S, Zhang G, Li X, Zhang J. 2014. Microbial production and applications of 5-aminolevulinic acid. Appl. Microbiol. Biotechnol. 98: 7349-7357.   DOI
20 Lu H, Zhang G, Wan T, Lu Y. 2011. Influences of light and oxygen conditions on photosynthetic bacteria macromolecule degradation: different metabolic pathways. Bioresour. Technol. 102: 9503-9508.   DOI
21 Nitai B, Debabrata D. 2007. The prospect of purple non-sulfur (PNS) photosynthetic bacteria for hydrogen production: the present state of the art. World J. Microbiol. Biotechnol. 23: 31-42.   DOI
22 Ponsano EHG, Paulino CZ, Pinto MF. 2008. Phototrophic growth of Rubrivivax gelatinosus in poultry slaughterhouse wastewater. Bioresour. Technol. 99: 3836-3842.   DOI
23 Sasikala C, Ramana CV, Rao PR. 1994. 5-Aminolevulinic acid: a potential herbicide/insecticide from microorganisms. Biotechnol. Progr. 10: 451-459.   DOI
24 Sasaki K, Ikeda S, Konishi T, Nishizawa Y, Hayashi M. 1989. Influence of iron on the excretion of 5-aminolevulinic acid by a photosynthetic bacterium, Rhodobacter sphaeroides. J. Ferment. Bioeng. 68: 378-381.   DOI
25 Sasaki K, Watanabe M, Tanaka T. 2002. Biosynthesis, biotechnological production and applications of 5-aminolevulinic acid. Appl. Microbiol. Biotechnol. 58: 23-29.   DOI
26 Sekine S-I, Nureki O, Dubois DY, Bernier S, Chênevert R, Lapointe J, et al. 2003. ATP binding by glutamyl-tRNA synthetase is switched to the productive mode by tRNA binding. EMBO J. 22: 676-688.   DOI
27 Sasaki K, Tanaka T, Nishizawa Y, Hayashi M. 1990. Production of a herbicide, 5-aminolevulinic acid, by Rhodobacter sphaeroides using the effluent of swine waste from an anaerobic digestor. Appl. Microbiol. Biotechnol. 32: 727-731.   DOI
28 Sasaki K, Tanaka T, Nagai S. 1998. Use of photosynthetic bacteria for the production of SCP and chemicals from organic wastes, pp. 247-291. In Martin AM (ed.). Bioconversion of Waste Materials to Industrial Products, 2Ed. Blackie Academic and Professional.
29 Sasaki K, Tanaka T, Nishio N, Nagai S. 1993. Effect of culture pH on the extracellular production of 5-aminolevulinic acid by Rhodobacter sphaeroides from volatile fatty acids. Biotechnol. Lett. 15: 859-864.
30 Shi X, Yu H. 2005. Response surface analysis on the effect of cell concentration and light intensity on hydrogen production by Rhodopseudomonas capsulate. Process Biochem. 40: 2475-2481.   DOI
31 Tangprasittipap A, Prasertsan P, Choorit W, Sasaki K. 2007. Biosynthesis of intracellular 5-aminolevulinic acid by a newly identified halotolerant Rhodobacter sphaeroides. Biotechnol. Lett. 29: 773-778.   DOI
32 Wu P, Zhang G, Li J, Lu H, Zhao W. 2012. Effects of Fe2+ concentration on biomass accumulation and energy metabolism in photosynthetic bacteria wastewater treatment. Bioresour. Technol. 119: 55-59.   DOI
33 Zhang C, Zhang H, Zhang Z, Jiao Y, Zhang Q. 2014. Effects of mass transfer and light intensity on substrate biological degradation by immobilized photosynthetic bacteria within an annular fiber-illuminating biofilm reactor. J. Photochem. Photobiol. B 131: 113-119.   DOI