Browse > Article
http://dx.doi.org/10.14478/ace.2022.1097

Biological Treatment of Nutrients and Heavy Metals in Synthetic Wastewater Using a Carrier Attached to Rhodobacter blasticus  

Kim, Deok-Won (Department of Environmental and Biological Chemistry, Chungbuk National University)
Park, Ji-Su (Field Quality Control Gimcheon part, Doosan Corporation Electro-Materials)
Oh, Eun-Ji (Water and Land Research Group/Division for Natural Environment, Korea Environment Institute)
Yoo, Jin (Indoor Environment Division, Incheon Research Institute of Public Health and Environment)
Kim, Deok-Hyeon (National Institute of Environmental Research)
Chung, Keun-Yook (Department of Environmental and Biological Chemistry, Chungbuk National University)
Publication Information
Applied Chemistry for Engineering / v.33, no.6, 2022 , pp. 666-674 More about this Journal
Abstract
The removal efficiencies of nutrients (N and P) and heavy metals (Cu and Ni) by Rhodobacter blasticus and R. blasticus attached to polysulfone carriers, alginate carriers, PVA carriers, and PVA + zeolite carriers in synthetic wastewater were compared. In the comparison of the nutrient removal efficiency based on varying concentrations (100, 200, 500, and 1000 mg/L), R. blasticus + polysulfone carrier treatment showed removal efficiencies of 98.9~99.84% for N and 96.92~99.21% for P. The R. blasticus + alginate carrier treatment showed removal efficiencies of 88.04~97.1% for N and 90.33~97.13% for P. The R. blasticus + PVA carrier treatment showed removal efficiencies of 18.53~44.25% for N and 14.93~43.63% for P. The R. blasticus + PVA + zeolite carrier treatment showed removal efficiencies of 26.65~64.33% for N and 23.44~64.05% for P. In addition, at the minimum inhibitory concentration of heavy metals, R. blasticus (dead cells) + polysulfone carrier treatment showed removal efficiencies of 7.77% for Cu and 12.19% for Ni. Rhodobacter blasticus (dead cells) + alginate carrier treatment showed removal efficiencies of 25.83% for Cu and 31.12% for Ni.
Keywords
Photosynthetic bacteria; Carrier; Nutrient; Heavy metal; Biological treatment;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 I. H. Kim, J. H. Choi, J. O. Joo, Y. K. Kim, J. W. Choi, and B. K. Oh, Development of a microbe-zeolite carrier for the effective elimination of heavy metals from seawater, J. Microbiol. Biotechnol., 25, 1542-1546 (2015).   DOI
2 I. H. Kim, J. H. Choi, J. O. Joo, Y. K. Kim, J. W. Choi, and B. K. Oh, Development of a microbe-zeolite carrier for the effective elimination of heavy metals from seawater, J. Microbiol. Biotechnol., 25, 1542-1546 (2015).   DOI
3 E. V. Ariskina, A. V. Vatsurina, N. E. Suzina, and E. Y. Gavrish, Cobalt- and chromium-containing inclusions in bacterial cells, Microbiology, 73, 159-162 (2004).   DOI
4 N. Lazaro, A. L. Sevilla, S. Morales, and A. M. Marques, Heavy metal biosorption by gellan gum gel beads, Water Res., 37, 2118-2126 (2003).   DOI
5 A. Blandino, M. Macias and D. Cantero, Glucose oxidase release from calcium alginate gel capsules, Enzyme Microb., 27, 319-324 (2000).   DOI
6 T. Kobayashi, M. Yoshimoto, and K. Nakao, Preparation and characterization of immobilized chelate extractant in PVA gel beads for an efficient recovery of copper (II) in aqueous solution, Ind. Eng. Chem. Res., 49, 2010 (2010).
7 H. Faghihian, M. Iravani, M. Moayed, and M. Ghannadi-Maragheh, Preparation of a novel PAN-zeolite nanocomposite for removal of Cs+ and Sr2+ from aqueous solutions: Kinetic, equilibrium, and thermodynamic studies, Chem. Eng. J., 222, 41-48 (2013).   DOI
8 M. Suhaimi, J. Liessens, and W. Verstraete, NH+/4-N assimilation by Rhodobacter capsulatus ATCC 23782 grown axenically and non-axenically in N and C rich media, J. Appl. Microbiol., 62, 53-64 (1987).   DOI
9 H. K. Shon, S. Vigneswaran, I. S. Kim, J. Cho, and H. H. Ngo, Fouling of ultrafiltration membrane by effluent organic matter: A detailed characterization using different organic fractions in wastewater, J. Membr. Sci., 278, 232-238 (2006).   DOI
10 K. Yang, X. Zhang, C. Chao, B. Zhang, and J. Liu, In-situ preparation of NaA zeolite/chitosan porous hybrid beads for removal of ammonium from aqueous solution, Carbohydr. Polym., 107, 103-109 (2014).   DOI
11 R. S. Bai and T. E. Abraham, Studies on chromium(VI) adsorption-desorption using immobilized fungal biomass, Biores. Technol., 87(1), 17-26 (2003).   DOI
12 Z. Aksu and F. Gonen, Biosorption of phenol by immobilized activated sludge in a continuous packed bed: prediction of breakthrough curves, Process Biochem., 39, 599-613 (2004).   DOI
13 W. R. Hill, S. E. Fanta, and B. J. Roberts, Quantifying phosphorus and light effects in stream algae, Limnol. Oceanogr., 54, 368-380 (2009).   DOI
14 E. Romera, F. Gonzalez, A. Ballester, M. L. Blazquez, and J. A. Munoz, Biosorption with algae: A statistical review, Crit. Rev. Biotechnol., 26, 223-235 (2006).   DOI
15 S. E. Bailey, T. J. Olin, R. M. Bricka, and D. D. Adrian, A review of potentially low-cost sorbents for heavy metals, Water Res., 11, 2469-2479 (1999).
16 Y. S. Jo and Y. S. Jang, A study to analyze the effect of food waste leachate (FWL) injection on the acceleration of waste bio-compression, J. Korea Soc. Waste Manag., 37, 211-218 (2020).   DOI
17 Q. Chen, J. Li, M. Liu, H. Sun, and M. Bao, Study on the biodegradation of crude oil by free and immobilized bacterial consortium in marine environment, PloS One, 12, e0174445 (2017).   DOI
18 S. Chaikasem, A. Abeynayaka, and C. Visvanathan, Effect of polyvinyl alcohol hydrogel as a biocarrier on volatile fatty acids production of a two-stage thermophilic anaerobic membrane bioreactor, Bioresour. Technol., 168, 100-105 (2014).   DOI
19 A. C. Texier, Y. Andres, C. Faur-Brasquet, and P. Le Cloirec, Fixed-bed study for lanthanide (La, Eu, Yb) ions rem Chemosphere oval from aqueous solutions by immobilized Pseudomonas aeruginosa: experimental data and modelization, Chemosphere, 47, 333-342 (2002).   DOI
20 D. H. Kim, E. S. Lom, and W. K. Cho, Design of dual functional surfaces: Non-biofouling and antimicrobial activities, Polym. Sci. Technol., 25, 312-318 (2014).
21 H. S. Shim, C. W. Jung, H. J. Son, and I. S. Sohn, Effect of membrane materials on membrane fouling and membrane washing, Korean Chem. Eng. Res., 45, 608-739 (2007).
22 V. Lazarova and J. Manem, Biofilm characterization and activity analysis in water and wastewater treatment, Water Res., 29, 2227-2245 (1955).   DOI
23 P. Y. Yang, T. Cai, and M. L. Wang, Immobilized mixed microbial cells for wastewater treatment, Biol. Wastes, 23, 295-312 (1988).   DOI
24 J. E. Kim, Preparation of Polymer Coated-Alginate Beads Entrapped Quorum Quenching Bacteria for Biofouling Control in MBR, PhD dissertation, Seoul National University, Seoul Korea (2014).
25 S. G. Kang and D. S. Kim, Studies on the characteristics of the methylene blue dye adsorption in waste water using the NaOH modified coffee waste, J. Korea Soc. Waste Manag., 37, 301-309 (2020).   DOI
26 T. Hulsen, D. J. Batstone, and J. Keller, Phototrophic bacteria for nutrient recovery from domestic wastewater, Water Res., 50, 18-26 (2014).   DOI
27 C. K. Yeom, S. H. Lee, and J. M. Lee, Pervaporative permeations of homologous series of alcohol aqueous mixtures through a hydrophilic membrane, J. Appl. Polym. Sci., 79, 703-713 (2001).   DOI
28 R. Y. M. Huang, R. Pal, and G. Y. Moon, Characteristics of sodium alginate membranes for the pervaporation dehydration of ethanol-water and isopropanol-water mixtures, J. Membr. Sci., 160, 101-113 (1999).   DOI
29 M. H. Lee, J. Y. Lee, and S. K. Wang, Remediation of heavy metal contaminated groundwater by using the biocarrier with dead Bacillus sp. B1 and polysulfone, Econ. Environ. Geol., 43, 555-564 (2010).
30 K. Azam, N. Shezad, I. Shafiq, P. Akhter, F. Akhtar, F. Jamil, S. Shafique, Y. K. Park, and M. Hussain, A review on activated carbon modifications for the treatment of wastewater containing anionic dyes, Chemosphere, 306, 135566 (2022).   DOI
31 Y. S. Lim and B. J. Yoo, Effects of average molecular weights, their concentrations, Ca++ and Mg++ on hydrophobicity of solution of Na-alginates prepared from sea tangle Saccharina japonicus produced in east coast of Korea, Korean J. Fish. Aquat. Sci., 51, 542-548 (2018).   DOI
32 M. A. Pereira, M. M. Alves, J. Azeredo, M. Mota, and R. Oliveira, Influence of physico-chemical properties of porous microcarriers on the adhesion of an anaerobic consortium, J. Ind. Microbiol. Biotechnol., 24, 181-186 (2000).   DOI
33 M. Shabir, M. Yasin, M. Hussain, I. Shafiq, P. Akhter, A. S. Nizami, B. H. Jeon, and Y. K. Park, A review on recent advances in the treatment of dye-polluted wastewater, J. Ind. Eng. Chem., 112, 1-19 (2022).   DOI
34 T. Cai, S. Y. Park, and Y. Li, Nutrient recovery from wastewater streams by microalgae: Status and prospects, Renew. Sustain. Energy Rev., 19, 360-369 (2013).   DOI
35 X. R. Dai and V. Blanes-Vidal, Emissions of ammonia, carbon dioxide, and hydrogen sulfide from swine wastewater during and after acidification treatment: Effect of pH, mixing and aeration, J. Environ. Manag., 115, 147-154 (2013).   DOI
36 G. Crini and E. Lichtfouse, Advantages and disadvantages of techniques used for wastewater treatment, Environ. Chem. Lett., 17, 145-155 (2019).   DOI
37 A. Buccolieri, F. Italiano, A. Dell'Atti, G. Buccolieri, L. Giotta, A. Agostiano, F. Milano, and M. Trotta, Testing the photosynthetic bacterium Rhodobacter sphaeroides as heavy metal removal tool, Ann. Chim., 96, 195-203 (2006).   DOI
38 J. W. Mulder, J. O. J. Duin, J. Goverde, W. G. Poiesz, H. M. Van Veldhuizen, R. Van Kempen, and P. Roeleveld, Full-scale experience with the SHARON process through the eyes of the operators, Water Environ. Found., 2006, 5256-5270 (2006).
39 H. Seo, M. Lee, and S. Wang, Development of a mathematical model for simulating removal mechanisms of heavy metals using biocarrier beads, J. Soil Groundw. Environ., 18, 8-18 (2013).
40 B. H. Jeong, E. M. Hoek, Y. Yan, A. Subramani, X. Huang, G. Hurwitz, A. K. Ghosh, and A. Jawor, Interfacial polymerization of thin film nanocomposites: A new concept for reverse osmosis membranes, J. Membr. Sci., 294, 1-7 (2007).   DOI
41 A. Khalid, A. A. Al-Juhani, O. C. Al-Hamouz, T. Laoui, Z. Khan, and M. A. Atieh, Preparation and properties of nanocomposite polysulfone/multi-walled carbon nanotubes membranes for desalination, Desalination, 367, 134-144 (2015).   DOI
42 C. H. Han and M. G. Lee, Removal of Cs and Sr ions by absorbent immobilized zeolite with PVA, J. Korean Soc. Environ. Eng., 37, 450-457 (2015).   DOI
43 L. Giotta, A. Agostiano, F. Italiano, F. Milano, and M. Trotta, Heavy metal ion influence on the photosynthetic growth of Rhodobacter sphaeroides, Chemosphere, 62, 1490-1499 (2006).   DOI
44 H. Seki, A. Suzuki, and S. I. Mitsueda, Biosorption of heavy metal ions on Rhodobacter sphaeroides and Alcaligenes eutrophus H16, J. Coll. Interf. Sci., 197, 185-190 (1998).   DOI
45 Y. S. Lim and B. J. Yoo, Effects of average molecular weights, their concentrations, Ca++ and Mg++ on hydrophobicity of solution of Na-alginates prepared from sea tangle Saccharina japonicus produced in east coast of Korea, Korean J. Fish. Aquat. Sci., 51, 542-548 (2018).   DOI
46 F. A. A. Al-Rub, M. H. El-Naas, F. Benyahia, and I. Ashour, Biosorption of nickel on blank alginate beads, free and immobilized algal cells, Process Biochem., 39, 1767-1773 (2004).   DOI
47 Q. Zhou, G. Zhang, X. Zheng, and G. Liu, Biological treatment of high NH4+-N wastewater using an ammonia-tolerant photosynthetic bacteria strain (ISASWR2014), Chin. J. Chem. Eng., 21, 1712-1715 (2015).
48 B. Szatkowska and B. Paulsrud, The anammox process for nitrogen removal from wastewater-achievements and future challenges, VANN, 49, 186-194 (2014).
49 A. G. Capodaglio, P. Hlavinek, and M. Raboni, Advances in wastewater nitrogen removal by biological processes: state of the art review, Revista Ambiente Agua, 11, 250-267 (2016).   DOI
50 J. S. Kim, D. C. Shin, J. T. Park, H. M. Jeong, X. Y. Ren, and C. H. Park, Treatment of nitrogen in recycle water using immobilized microbial media, J. Korean Soc. Environ. Eng., 41, 191-195 (2019).   DOI
51 T. A. Davis, B. Volesky, and A. Mucci, A review of the biochemistry of heavy metal bio-sorption by brown algae, Water Res., 37, 4311-4330 (2003).   DOI
52 O. Smidsrod and G. Skja, Alginate as immobilization matrix for cells, Trends Biotechnol., 8, 71-78 (1990).   DOI
53 S. K. Bajpai and S. Sharma, Investigation of swelling/degradation behaviour of alginate beads crosslinked with Ca2+ and Ba2+ ions, React. Funct. Polym., 59, 129-140 (2004).   DOI
54 N. E. Simpson, C. L. Stabler, C. P. Simpson, A. Sambanis, and I. Constantinidis, The role of the CaCl2-guluronic acid interaction on alginate encapsulated βTC3 cells, Biomaterials, 25, 2603-2610 (2004).   DOI
55 Y. Zhang, D. Kogelnig, C. Morgenbesser, A. Stojanovic, F. Jirsa, I. Lichtscheidl-Schultz, R. Krachler, Y. Li, and B. K. Keppler, Preparation and characterization of immobilized [A336][MTBA] in PVA-alginate gel beads as novel solid-phase extractants for an efficient recovery of Hg (II) from aqueous solutions, J. Hazard. Mater., 196, 201-209 (2011).   DOI
56 J. H. Yoon, D. C. Shin, H. S. Kim, and C. H. Park, Fabrication and physical property analysis of PVA, PEG modified polymer immobilized media, Korean Soc Urban Environ.., 18, 95-100 (2018).   DOI
57 Z. Huang, H. M. Guan, W. L. Tan, X. Y. Qiao, and S. Kulprathipanja, Pervaporation study of aqueous ethanol solution through zeolite-incorporated multilayer poly(vinyl alcohol) membranes: Effect of zeolites, J. Membr. Sci., 276, 260-271 (2006).   DOI
58 H. Ahn, H. Lee, S. B. Lee, and Y. Lee, Dehydration of TFEA/water mixture through hydrophilic zeolite membrane by pervaporation, J. Membr. Sci., 291, 46-52 (2007).   DOI
59 Y. Feng and Y. Yu, Biosorption and bioreduction of trivalent aurum by photosynthetic bacteria Rhodobacter capsulatus, Curr. Microbiol., 55, 402-408 (2007).   DOI
60 J. W. Costerton, K. J. Cheng, G. G. Geesey, T. I. Ladd, J. C. Nickel, M. Dasgupta, and T. J. Marrie, Bacterial biofilms in nature and disease, Annu. Rev. Microbiol., 41, 435-464 (1987).   DOI
61 M. Kobayashi and Y. T. Tchan, Treatment of industrial waste solutions and production of useful by-products using a photosynthetic bacterial method, Water Res., 7, 1219-1224 (1973).   DOI
62 B. Fridrich, D. Krcmar, B. Dalmacija, J. Molnar, V. Pesic, M. Kragulj, and N. Varga, Impact of wastewater from pig farm lagoons on the quality of local groundwater, Agric. Water Manage., 135, 40-53 (2014).   DOI
63 Y. M. Song, An Oxidation Treatment of wastewater containing reducing substances, J. Korea Soc. Waste Manag., 37, 188-193 (2020).   DOI
64 H. Gu, W. Xie, A. Du, D. Pan, and Z. Guo, Overview of electro-catalytic treatment of antibiotic pollutants in wastewater, Catal. Rev., 1-51 (2021).
65 S. H. Yang and Y. H. Kim, Application of ferrate (VI) for selective removal of cyanide from plated wastewater, Clean Technol., 27, 168-173 (2021).   DOI
66 J. Y. An, B. K. Lee, B. H. Jeon, and M. K. Ji, A management plan of wastewater sludge to reduce the exposure of microplastics to the ecosystem, Clean Technol., 27, 1-8 (2021).   DOI