Browse > Article

Cloning and Expression of the Rhodobacter capsulatus hemA Gene in E. coli for the Production of S-Aminolevulinic Acid  

KANG , DAE-KYUNG (Bio-Resources Institute, EASY BIO System)
KIM, SANG-SUK (Bio-Resources Institute, EASY BIO System)
CHI, WON-JAE (Bio-Resources Institute, EASY BIO System)
HONG, SOON-KWANG (Department of Biological Science, Myongji University)
KIM, HA-KUN (Department of Genetic Engineering, Pai Chai University)
KIM, HYUN-UK (School of Agricultural Biotechnology, Seoul National University)
Publication Information
Journal of Microbiology and Biotechnology / v.14, no.6, 2004 , pp. 1327-1332 More about this Journal
Abstract
The hemA gene encoding 5-aminolevulinic acid synthase (ALAS) was cloned from Rhodobacter capsulatus, and its nucleotide sequence was determined. DNA sequencing data revealed one open reading frame coding for a protein with 401 amino acids that displayed high similarity to the amino acid sequences of other known ALASs. The hemA gene was then cloned and expressed under the control of constitutive promotor in E. coli. The recombinant E. coli strain was able to accumulate 5-aminolevulinic acid to 21 mM in the liquid medium supplemented with 45 mM glycine and 120 mM succinate. In addition, a marked effect of the pH of the culture medium on ALA production was observed, and the optimum pH for culture medium was determined to be 5.8-6.3.
Keywords
Rhodobacter capsulatus; hemA; ALA synthase; 5-aminolevulinic acid;
Citations & Related Records

Times Cited By Web Of Science : 0  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Avissar, Y. J. and S. I. Beale. 1989. Identification of the enzymatic basis for $\delta$-aminolevulinic acid auxotrophy in a hemA mutant of Escherichia coli. J. Bacteriol. 171: 2919-2924
2 Choi, H.-P., H.-J. Kang, H.-C. Seo, and H.-C. Sung. 2002. Isolation and identification of photosynthetic bacterium useful for wastewater treatment. J. Microbiol. Biotechnol. 12(4): 643-648
3 Hunter, G. A. and G. C. Ferreira. 1999. Lycine-313 of 5-aminolevulinate synthase acts as a general base during formation of the quinonoid reaction intermediates. Biochemistry 38: 3711-3718
4 Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature (London) 227: 680-685   DOI   PUBMED   ScienceOn
5 Leong, S. A., P. H. Williams, and G. S. Ditta. 1985. Analysis of the 5' regulatory region of the gene for 5-aminolevulinic acid synthetase of Rhizobium meliloti. Nucleic Acids Res. 13: 5965-5976   DOI
6 Nishkawa, S., K. Watanabe, T. Tanaka, N. Miyachi, Y. Hotta, and Y. Murooka. 1999. Rhodobacter sphaeroides mutants which accumulate 5-aminolevulinic acid under aerobic and dark conditions. J. Biosci. Bioeng. 87: 798-804
7 Rebeiz, C. A., A. Montazer-Zouhool, H. Hopen, and S. M. Wu. 1984. Photodynamic herbicides. I. Concepts and phenomenology. Enzyme Microb. Technol. 6: 390-401
8 Sasaki, K., M. Watanabe, T. Tanaka, and T. Tanaka. 2002. Biosynthesis, biotechnological production and applications of 5-aminolevulinic acid. Appl. Microbiol. Biotechnol. 58: 23-29
9 Sasaki, K., S. Ikeda, Y. Nishizawa, and M. Hayashi. 1987. Production of 5-aminolevulinic acid by photosynthetic bacteria. J. Ferment. Technol. 65: 511-515
10 Mauzerall, D. and S. Granick. 1956. The occurrence and determination of 5-aminolevulinic acid and porphobilinogen in urine. J. Biol. Chem. 219: 435-446
11 Granick, S. and S. I. Beale. 1978. Hemes, chlorophylls, and related compound: Biosynthesis and metabolic regulation. Adv. Enzymol. 46: 33-203
12 Hotta, Y. and K. Watanabe. 1999. Plants growth-regulating activities of 5-aminolevulinic acid. Syokubutu-no-Kagaku- Tyousetu (Chemical regulation of plants) 34: 85-96
13 Choi, C., B.-S. Hong, H.-C. Sung, H.-S. Lee, and J.-H. Kim. 1999. Optimization of extracellular 5-aminolevulinic acid production from Escherichia coli transformed with ALA synthase gene of Bradyrhizobium japonicum. Biotechnol. Lett. 21: 551-554
14 Elliott, T. and J. R. Roth. 1989. Heme-deficient mutants of Salmonella typhimurium: Two genes required for ALA synthesis. Mol. Gen. Genet. 216: 303-314
15 Choi, K.-M., W.-J. Lim, and S.-Y. Hwang. 1993. Influence of C5-precursors on $\delta$-aminolevulinic acid biosynthesis in Rhodocyclus gelatinosus KUP-74. Kor. J. Appl. Microbiol. Biotechnol. 21: 527-533
16 Bunke, A., H. Schmid, G. Burmeister, H. P. Merkle, and B. Gander. 2000. Validation of a capillary electrophoresis method for determination of 5-aminolevulinic acid and degradation products. J. Chromatogr. 883: 285-290
17 Lim, W.-J., K.-M., Choi, and S.-Y. Whang. 1993. Optimization of an intact cell system of Rhodobacter gelatinosus KUP-74 for $\delta$-aminolevulinic acid production. J. Microbiol. Biotechnol. 3: 244-251
18 Thompson, J. D., D. G. Higgins, and T. J. Gibson. 1994. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22: 4673-4680
19 Werf, M. and J. G. Zeikus. 1996. 5-Aminolevulinate production by Escherichia coli containing the Rhodobacter sphaeroides hemA gene. Appl. Environ. Microbiol. 62: 3560-3566
20 Gadmar O. B., J. Moan, E. Scheie, L.-W. Ma, and Q. Peng. 2002. The stability of 5-aminolevulinic acid in solution. J. Photochem. Photobiol. 67: 187-193
21 Kikuchi, G., A. Kumor, P. Talmage, and D. Shemin. 1958. The enzymatic synthesis of $\delta$-aminolevulinic acid. J. Biol. Chem. 233: 1214-1219
22 Kim, N.-J., I. S. Suh, B.-K. Hur, and C.-G. Lee. 2002. Simple monodimensional model for linear growth rate of photosynthetic microorganisms in flat-plate photobioreactors. 12(6): 962-971
23 Ferreira, G. and J. Gong. 1995. 5-Aminolevulinate synthase and the first step of heme biosynthesis. J. Bioenerg. Biomembr. 27: 151-159
24 Grimm, B., A. Kumar, P. Talmage, and D. Shemin. 1991. Structural gene of glutamate-1-semialdehyde aminotransferase for porphyrin synthesis in a cyanobacterium and Escherichia coli. Mol. Gen. Genet. 225: 1-10
25 Mak, Y. M. and K. K. Ho. 1992. An improved method for isolation of chromosomal DNA from various bacteria and cyanobacteria. Nucleic Acids Res. 20: 4101-4102
26 Atri, N. and L. C. Rai. 2003. Differential responses of three cyanobacteria to UV-B and Cd. J. Microbiol. Biotechnol. 13(4): 544-551
27 Zucconi, A. P. and J. T. Beatty. 1988. Posttranscriptional regulation by light of the steady-state levels of mature B800- 850 light-harvesting complexes in Rhodobacter capsulatus. J. Bacteriol. 170: 877-882
28 Beale, S. J. and P. A. Castelfranco. 1974. The biosynthesis of $\delta$-aminolevulinic acid in higher plants. II. Formation of $^14$C-$\delta$-aminolevulinic acid from labeled precursors in greening plant tissue. Plant Physiol. 53: 297-303
29 Poo, H., J. J. Song, S.-P. Hong, Y.-H. Choi, S. W. Yun, J.-H. Kim, S. C. Lee, S.-G. Lee, and M. H. Sung. 2002. Novel high-level constitutive expression system, pHCE vector, for a convenient and cost-effective soluble production of human tumor necrosis factor. Biotechnol. Lett. 24: 1185-1189   DOI   ScienceOn
30 Sambrook, J., E. F. Fritsch, and T. Maniatis. 1989. Molecular Cloning: A Laboratory Manual, 2nd ed. Cold Spring Harbor Laboratory Press, New York, U.S.A
31 Adams, C. W., M. E. Forrest, S. N. Cohen, and T. Beatty. 1989. Structural and functional analysis of transcriptional control of the Rhodobacter capsulatus puf operon. J. Bacteriol. 171: 473-482