• Title/Summary/Keyword: Rhodobacter

Search Result 113, Processing Time 0.019 seconds

Quorum Sensing of Rhodobacter sphaeroides Negatively Regulates Cellular Poly-$\beta$-Hydroxybutyrate Content Under Aerobic Growth Conditions

  • Lee, Jeong-K.;Kho, Dhong-Hyo;Jang, Ji-Hee;Kim, Hye-Sun;Kim, Kun-Soo
    • Journal of Microbiology and Biotechnology
    • /
    • v.13 no.3
    • /
    • pp.477-481
    • /
    • 2003
  • The community escape response of Rhodobacter sphaeroides is exerted through the action of CerR and CerI, which code for a LuxR-type regulatory protein and acylhomoserine lactone synthase, respectively. Deletion of chromosomal DNA including cerR and cerI (mutant RI) or insertional interruption of cert (mutant AP3) resulted in two-fold increase in the cellular poly-${\beta}$-hydroxybutyrate (PHB) content In comparison with the wild-type under aerobic growth conditions. The PHB synthase (PhbC) activities of the cer mutants were doubled, and the enzyme expression was regulated at the level of phbC transcription. Thus, CerR, possibly in response to autoinducer (AI), appears to modulate the PHB content of aerobically grown cells by downregulating phbC transcription.

Lipopolysaccharide Yields from Rhodobacter capasulatus with indirect ELISA

  • Yoo, Tae-Eun;Lee, Hyun-Soon
    • Journal of Microbiology
    • /
    • v.34 no.3
    • /
    • pp.255-262
    • /
    • 1996
  • The lipopolysaccharide (LPS) yields were measured in Rhodobacter capsulatus under several conditions by the ELISA method. The purification of LPS was done by affinity chromatography of IgG coupled CNBr-activated sepharose-4B instead of ultra-centrifugation. The purity of the LPS didn't show much difference between affinity chromatography and ultra-centrifugation method, but affinity chromatography method required much fewer organisms and was more convenient. LPS yield was measured in ng units by the ELISA method. Mannitol was a better single carbon source than other sugars, but mixing two carbon sources resulted in greater LPS yields than any sugar alone. LPS yield was directly proportional to $NH_ 4CI$ concentration, with optimum yields at 0.05% nitrogen. In contrest to LPS yields, which decreased at 0.005% nitrogen concentration total protein was increased 16 times. Calcium influenced LPS yields. At 0.7 mM $CaCI_ 2$, the LPS yield was 16.5 $\mu$g/mg DW, five times the yield without calcium.

  • PDF

Effects of pH and Light Irradiation on Coenzyme Q10 Production Using Rhodobacter sphaeroides

  • Jeong, Soo-Kyoung;Dao, Van Thingoc;Kien, Ngyuen;Kim, Joong-Kyun
    • Fisheries and Aquatic Sciences
    • /
    • v.11 no.4
    • /
    • pp.219-223
    • /
    • 2008
  • To increase the level of $CoQ_{10}$ production in mass culture, the effects of pH and light irradiation on $CoQ_{10}$ production by Rhodobacter sphaeroides were investigated in a 1-L bioreactor. $CoQ_{10}$ production was growth-associated, and the highest production of $CoQ_{10}$ (1.69 mg/g dry cell) was obtained under uncontrolled pH: this production was 1.7 times higher than that obtained at controlled pH 7. Therefore, pH was a key factor affecting $CoQ_{10}$ production. The effect of light irradiation on $CoQ_{10}$ production was negligible. This result offers an advantage for mass production of $CoQ_{10}$.

Characterization of Enzymes Against Oxygen Derivatives Produced by Rhodobacter sphaeroides D-230 (Rhodobacter sphaeroides D230이 생성하는 산소 유도체에 작용하는 효소의 특성)

  • 김동식;이혜주
    • Korean Journal of Microbiology
    • /
    • v.40 no.2
    • /
    • pp.94-99
    • /
    • 2004
  • The activities of enzymes that act on oxygen derivatives in Rhodobacter sphaeroides D-230 were investigated under various culture conditions. Intracellular SOD activity from the cells grown in aerobic or anaerobic culture conditions was highest at pH 7.0 and pH 8.0, respectively. On the other hand, extracellular SOD activity was highest at pH 6.0. Catalase activity was highest at neutral pH in both cases. Growth of R. sphaeroides D-230 in aerobic or anaerobic culture conditions was inhibited by methyl viologen. As R. sphaeroides D-230 was cul-tured aerobically, SOD activity was increased about 2-fold by addition of iron ion. But $Mn^+2$ had little effect on the SOD activity of R. sphaeroides D-230 grown in aerobically. NaCN, the inhibitor of Cu$.$Zn-SOD, did not inhibit SOD activity. But, $NaN_3$, the inhibitor of Mn-SOD, inhibited SOD activity in anaerobic cultures con-dition. Therefore, R. sphaeroides D-230 produce Mn-SOD in anaerobic condition, although Fe-Sod is produced in aerobic condition. The activity of catalase was induced by methyl viologen, however, extremely inhibited by NaCN and $NaN_3$.

Isolation and Identification of a Photosynthetic Bacterium Containing $Q_{10}$ ($Q_{10}$ 함유 광합성세균의 분리 및 동정)

  • Jeong, Soo Kyoung;Kim, Joong Kyun
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.2 no.2
    • /
    • pp.120-122
    • /
    • 2007
  • A $Q_{10}$-producing photosynthetic bacterium was isolated from the silt at Nakdong river. The isolate had 1.55 mg of $Q_{10}$ per gram of dry cell. By the 16s-rDNA sequence analysis, the isolate was found to be Rhodobacter sphaeroids with 100% similarity (Genbank Accession No.=AM696701).

  • PDF

Characterization of PpsR, a Transcriptional Repressor of the Expression of Photosysem Gene, from Rhodobacter sphaeroides

  • Cho, Seung-Hyun;Kang, Sa-Ouk
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 2002.06b
    • /
    • pp.51-51
    • /
    • 2002
  • PpsR from the facultative photohetrotroph Rhodobacter sphaeroides is involved in repression of photo system gene expression. SDS-PAGE analysis showed that some portion of PpsR is oxidized so that intra- or inter-disulfide bond is formed between the two cysteins in each subunit. The disulfide bond was reduced by dithiothreitol and the binding activity to puc promoter region was increased.(omitted)

  • PDF

Characterization of Activator of Photopigment and puc Expression, AppA from Rhodobacter sphaeroides 2.4.1

  • Yun, Sang-Hee;Cho, Seung-Hyun;Sa-Ouk kang
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 2001.06a
    • /
    • pp.50-50
    • /
    • 2001
  • Rhodobacter sphaeroides 2.4.1 is a facultatively photoheterotrophic bacterium. The AppA protein is required for increased photo system gene expression upon transition from aerobic respiration to anaerobic photosynthesis condition. This protein has FAD binding domain in amino terminus and cysteine-rich motif in carboxy terminus.(omitted)

  • PDF

Photo-Fermentative Hydrogen Production by Rhodobacter Sphaeroides KD131 under Various Culture Conditions (다양한 배양조건에 따른 Rhodobacter sphaeroides KD131의 광발효 수소생산)

  • Son, Han-Na;Kim, Dong-Hoon;Lee, Won-Tae;Rhee, Young-Ha;Kim, Mi-Sun
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.22 no.4
    • /
    • pp.451-457
    • /
    • 2011
  • Purple non-sulfur (PNS) bacterium $Rhodobacter$ $sphaeroides$ KD131 was studied with the aim of achieving maximum hydrogen production using various carbon and nitrogen sources at different pH conditions. Cells grew well and produced hydrogen using $(NH_4){_2}SO_4$ or glutamate as a nitrogen source in combination with a carbon substrate, succinate or malate. During 48h of photo-heterotrophic fermentation under 110$W/m^2$ illumination using a halogen lamp at $30^{\circ}C$, 67% of 30mM succinate added was degraded and the hydrogen yield was estimated as 3.29mol $H^2$/mol-succinate. However, less than 30% of formate was consumed and hydrogen was not produced due to a lack of genes coding for the formate-hydrogen lyase complex of strain KD131. Initial cell concentrations of more than 0.6g dry cell weight/L-culture broth were not favorable for hydrogen evolution by cell aggregation, thus leading to substrate and light unavailability. In a modified Sistrom's medium containing 30mM succinate with a carbon to nitrogen ratio of 12.85 (w/w), glutamate produced 1.40-fold more hydrogen compared to ammonium sulfate during the first 48h. However, ammonium sulfate was 1.78-fold more effective for extended cultivation of 96h. An initial pH range from 6.0 to 9.0 influenced cell growth and hydrogen production, and maintenance of pH 7.5 during photofermentation led to the increased hydrogen yield.

Optimization of Medium for the Carotenoid Production by Rhodobacter sphaeroides PS-24 Using Response Surface Methodology (반응 표면 분석법을 사용한 Rhodobacter sphaeroides PS-24 유래 carotenoid 생산 배지 최적화)

  • Bong, Ki-Moon;Kim, Kong-Min;Seo, Min-Kyoung;Han, Ji-Hee;Park, In-Chul;Lee, Chul-Won;Kim, Pyoung-Il
    • Korean Journal of Organic Agriculture
    • /
    • v.25 no.1
    • /
    • pp.135-148
    • /
    • 2017
  • Response Surface Methodology (RSM), which is combining with Plackett-Burman design and Box-Behnken experimental design, was applied to optimize the ratios of the nutrient components for carotenoid production by Rhodobacter sphaeroides PS-24 in liquid state fermentation. Nine nutrient ingredients containing yeast extract, sodium acetate, NaCl, $K_2HPO_4$, $MgSO_4$, mono-sodium glutamate, $Na_2CO_3$, $NH_4Cl$ and $CaCl_2$ were finally selected for optimizing the medium composition based on their statistical significance and positive effects on carotenoid yield. Box-Behnken design was employed for further optimization of the selected nutrient components in order to increase carotenoid production. Based on the Box-Behnken assay data, the secondary order coefficient model was set up to investigate the relationship between the carotenoid productivity and nutrient ingredients. The important factors having influence on optimal medium constituents for carotenoid production by Rhodobacter sphaeroides PS-24 were determined as follows: yeast extract 1.23 g, sodium acetate 1 g, $NH_4Cl$ 1.75 g, NaCl 2.5 g, $K_2HPO_4$ 2 g, $MgSO_4$ 1.0 g, mono-sodium glutamate 7.5 g, $Na_2CO_3$ 3.71 g, $NH_4Cl$ 3.5g, $CaCl_2$ 0.01 g, per liter. Maximum carotenoid yield of 18.11 mg/L was measured by confirmatory experiment in liquid culture using 500 L fermenter.

Characterization of ATPase Activity of Free and Immobilized Chromatophore Membrane Vesicles of Rhodobacter sphaeroides

  • Kim, Hyeonjun;Tong, Xiaomeng;Choi, Sungyoung;Lee, Jeong K.
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.12
    • /
    • pp.2173-2179
    • /
    • 2017
  • The intracytoplasmic membrane of Rhodobacter sphaeroides readily vesiculates when cells are lysed. The resulting chromatophore membrane vesicle (CMV) contains the photosynthetic machineries to synthesize ATP by ATPase. The light-dependent ATPase activity of CMV was lowered in the presence of $O_2$, but the activity increased to the level observed under anaerobic condition when the reaction mixture was supplemented with ascorbic acid (${\geq}0.5mM$). Cell lysis in the presence of biotinyl cap phospholipid (bcp) resulted in the incorporation of bcp into the membrane to form biotinylated CMV (bCMV), which binds to streptavidin resin at a ratio of approximately $24{\mu}g$ bacteriochlorophyll a/ml resin. The ATPase activity of CMV was not affected by biotinylation, but approximately 30% of the activity was lost by immobilization to resin. Interestingly, the remaining 70% of ATPase activity stayed constant during 7-day storage at $4^{\circ}C$. On the contrary, the ATPase activity of bCMV without immobilization gradually decreased to approximately 40% of the initial level in the same comparison. Thus, the ATPase activity of CMV is sustainable after immobilization, and the immobilized bCMV can be used repeatedly as an ATP generator.