• Title/Summary/Keyword: Rhizobium sp.

Search Result 19, Processing Time 0.026 seconds

Hairy Vetch Growth-Promoting Rhizobium sp. RH84 and Application to Reclaimed Land (Rhizobium sp. RH84에 의한 간척지 환경에서의 헤어리베치 생육촉진)

  • Jang, Jong-Ok;Kwon, Mi-Kyung;Park, Dong-Jin;Sung, Chang Keun;Kim, Chang-Jin
    • Journal of Applied Biological Chemistry
    • /
    • v.56 no.4
    • /
    • pp.235-239
    • /
    • 2013
  • This study was carried out to investigate the plant growth promoting activity of hairy vetch (Vicia villosa Roth) on reclaimed land. At the previous research, Rhizobium sp. RH84 was isolated and selected for further study from hairy vetch. For the investigation of plant growth promoting effects by the Rhizobium sp. RH84, production of indole acetic acid (IAA), siderophore, phosphate solubilization and nitrogen fixation were tested and other characters were examined. As results, RH84 produced $9.03{\mu}g$ IAA per mL and showed nitrogen fixation activity. With the treatment of Rhizobium sp. RH84 to hairy vetch showed good growth at 0.3% salty reclaimed soil, and the production yield was increased up to 56% at field test. From these results, it was confirmed that the Rhizobium sp. RH84 would be used as a green manure for hairy vetch under the salty condition of reclaimed land.

Molecular Cloning of nifHD from Rhizobium sp. SNU003 (Rhizobium sp. SNU003의 nifHD 클로닝)

  • 강명수;안정선
    • Korean Journal of Microbiology
    • /
    • v.31 no.2
    • /
    • pp.123-128
    • /
    • 1993
  • Genes for dinitrogenase reductase (nifH) and dinitogenase a subunit (nifD) were found to be located on 7.9 kb of EcoRI, 6.5 kb of Sail, 7.3 kb of HindlII and 4.4 kb of Pstl fragments of the genomic blot of Rhizobium sp. SNU003. a symbiotic strain from root nodule of Canavalia lineata. Nine recombinant phage nif-clones were selected from the genomic library constructed by using EMBL-3 BamHI arms of bacteriophage lambda. Among them. Rnif-6 had insert DNA of 15.3 kb. in which 7.6 kb of BamHI!SacI fragment contained nifHD region. Therefore, the 7.6 kb fragment was subcloned into pUC19 and partial restriction map was constructed. As the results, nifH and nifD were found to be located continuously on 4.5 kb of BamHI/BglIl in the genome of Rhizobium sp. SNU003 strain.

  • PDF

Screening of Rhizobium, Hairy Vetch Root Nodule Bacteria, with Promotion of Nodulation and Nitrogen Fixation (뿌리혹 형성능과 질소 고정능이 우수한 헤어리베치 유래 Rhizobium의 분리 및 선발)

  • Jang, Jong-Ok;Kwon, Mi-Kyung;Park, Dong-Jin;Sung, Chang Keun;Kim, Chang-Jin
    • Korean Journal of Microbiology
    • /
    • v.49 no.2
    • /
    • pp.131-136
    • /
    • 2013
  • This study was conducted to select rhizobia from hairy vetch (Vicia villosa Roth) with nodulation and excellent nitrogen-fixing ability. Hairy vetch root was collected from 7 of cultivation region of all over the country, rhizobia were isolated from the root nodules. Isolates were re-inoculated into a hairy vetch separately and studied nodulation and nitrogen-fixing ability. As a result, total of 52 Rhizobium isolates were isolated from the hairy vetch root nodules, among these, 16 isolates were Rhizobium which show good growth at more than 0.5% NaCl concentration. These 16 isolates were re-inoculated separately, 8 weeks after, good root nodule formation was observed from Rhizobium sp. RH1, RH3, RH81, RH82, RH84, and RH93 strain treated samples. Six isolates were positive for nitrogen fixing ability, the highest acetylene reduction activity was shown by Rhizobium sp. RH84. Results suggest that the Rhizobium sp. RH84 could be used as the possibility of its application as a green manure crop of hairy vetches in nonuniform salt distribution reclaimed land.

Construction of rhizobium-E. coli shuttle vector using replication and mobilization function of indigenous multicopy plasmid from rhizobium (Rhizobium muliticopy plasmid의 복제 및 이주 기능을 이용한 rhizobium-E. coli shuttle vector 구축)

  • 조무제;신평균;최영주;강규영;윤한대
    • Korean Journal of Microbiology
    • /
    • v.27 no.2
    • /
    • pp.92-97
    • /
    • 1989
  • the vector, pGUR19, for Rhizobium gene manipulation, was constructed by combining the replication and mobilization function of indigenous multicopy plasmid from Acacia(Robinia pseudoacacia L.) Rhizobia sp86 with E. coli cloning vehicle, pBR322. The vector could be efficiently mobilized by RP4 tra function incorporated into chromosome of E. coli named SM10 and efficiently transferred to various gram negative hosts including Rhizobium and Afrobacterium by transformation. Mobilization frequency of the constructed vector was ranged from $1.2\times 10^{-2}$ (E.coli HB 101) to $4.6\times 10^{-4}$ (A. tumefaciens 15955) and transformation frequency was ranged from $5.4\times 10^{-7}$(E. coli HB101) to $1.2\times 10^{-10}$ (A. tumefaciens 15955). The vector, pGUR19, was stably replicated and maintained in a variety of Rhizobium and Agrobacterium.

  • PDF

Isolation and Characteristics of Exopolysaccharide Producing Bacteria in a Ginseng Root System (인삼 근계로부터 다당 생성세균의 분리 및 특성)

  • Cho, Geon-Yeong;Jeon, In-Hwa;Han, Song-Ih;Whang, Kyung-Sook
    • Korean Journal of Microbiology
    • /
    • v.49 no.3
    • /
    • pp.297-300
    • /
    • 2013
  • EPS producing bacteria were enumerated in ginseng root system (rhizosphere soil, rhizoplane, inside of root). EPS producing bacterial density of rhizosphere soil, rhizoplane and inside of root were distributed $9.0{\times}10^6$ CFU/g, $7.0{\times}10^6$ CFU/g, and $1.4{\times}10^3$ CFU/g, respectively. Phylogenetic analysis of the 24 EPS producing isolates based on the 16S rRNA gene sequences, EPS producing isolates from rhizosphere soil (RS) belong to genus Arthrobacter (6 strains) and Rhizobium (1 strain). EPS producing bacteria from rhizoplane (RP) were Arthrobacter (6 strains), Rhodococcus (1 strain) and Pseudomonas (1 strain). EPS producing bacteria from inside of root (IR) were categorized into Rhzobium (6 strains), Bacillus (1 strain), Rhodococcus (1 strain), and Pseudomonas (1 strain). Phylogenetic analysis indicated that Arthrobacter may be a member of representative EPS producing bacteria from ginseng rhizosphere soil and rhizoplane, and Rhizobium is typical EPS producing isolates from inside of ginseng root. The yield of EPS was 10.0 and 4.9 g/L by Rhizobium sp. 1NP2 (KACC 17637) and Arthrobacter sp. 5MP1 (KACC 17636). The purified EPS were analyzed by Bio-LC and glucose, galactose, mannose and glucosamine were detected. The major EPS sugar of these strains was glucose (72.7-84.9%).

Isolation of Symbiotic Rhizobium spp. Strain from Root Nodule of Canavalia lineata (해녀콩(canavalia lineata) 뿌리혹으로부터 공생균주 Rhizobium spp.의 분리)

  • 김성천;안정선
    • Korean Journal of Microbiology
    • /
    • v.27 no.4
    • /
    • pp.398-403
    • /
    • 1989
  • The root nodule of Canavalia lineta was classified as a determinate nodule and the symbiont as a Rhizobium-bacteriod based on their morphological characteristics. Isolated encosymbiont was similar both to R. leguminosarum and R. meliloti in its peritrichous arrangement of flagella and some of the physiological characteristics. Compared to control plants, Canavalia seedlings inoculated with the isolate grew normally due to induced root nodules, confirming isolate's infectivity and effectivity. Characteristics of the reisolated endosymbiont from induced root nodule were identical to those of the first isolate, indicating the nodules were induced by the first isolate. From these results, it was confirmed that Rhizobium strain isolated from the root nodules of Canavalia lineata was a real symbiont, and was named Rhizobium sp. SNU003.

  • PDF

Effects of Osmoprotectants on the Growth and Nitrogenase Activity of Rhizobium and Azospirillum under Osmotic Stress (질소고정균의 성장과 질소고정력에 대한 osmoprotectant의 영향)

  • Gal, Sang-Wan;Choi, Young-Ju
    • Applied Biological Chemistry
    • /
    • v.41 no.1
    • /
    • pp.53-59
    • /
    • 1998
  • The Rhizobium and Azospirillum spp. were isolated from the root nodules of several leguminous plants and rhizosphere of various paddy rice varieties. The growth of the nitrogen-fixing strains isolated was largely inhibited in yeast extract-mannitol medium (AMA) containing 0.6 M NaCl. In response to osmotic stress, the nitrogen-fixing strains accumulate intracellular free glutamate. The growth and nitrogenase activity of Rhizobium and Azospirillum were increased by addition of osmoprotectants such as proline, glycine betaine, and glutamate during salt stress. Glycine betaine was the most effective among exogenous osmoprotectants tested. In the absence of sodium chloride, nitrogenase activity seem to be slightly decreased by the presence of the proline or glycine betaine. These results revealed that nitrogenase activity was repressed by fixed nitrogens such as proline or glycine betaine.

  • PDF

Responses of Pea Varieties to Rhizobium Inoculation: Nitrogenase Activity, Dry Matter Production and Nitrogen Uptake

  • Solaiman, A.R.M.;Khondaker, M.;Karim, A.J.M.S.;Hossain, M.M.
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.48 no.5
    • /
    • pp.361-368
    • /
    • 2003
  • The responses of five varieties and three cultivars of pea (Pisum sativum) to Rhizobium inoculation on nodulation, growth, nitrogenase activity, dry matter production and N uptake were investigated. The pea varieties were IPSA Motorshuti-l, IPSA Motorshuti-2, IPSA Motorshuti-3, BARI Motorshuti-l, BARI Motorshuti-2 and the cultivars were 063, Local small and Local white. Fifty percent seeds of each pea variety/cultivar were inoculated with a mixture of Rhizobium inoculants at rate of 15g/kg seed and the remaining fifty percent seeds were kept uninoculated. The plants inoculated with Rhizobium inoculant significantly increased nodulation, growth, nitrogenase activity, dry matter production and N uptake. Among the varieties/cultivars, BARI Motorshuti-l performed best in almost all parameters including nitrogenase activity of root nodule bacteria of the crop. There were positive correlations among the number and dry weight of nodules (r=$0.987^{**}$, $0.909^{**}$), nitrogenase activity of root nodule bacteria (r=$0.944^{**}$, $0.882^{**}$), dry weight of shoot (r=$0.787^{**}$, $0.952^{**}$), N content (r=$0.594^{**}$, $0.605^{**}$) and N uptake (r=$0.784^{**}$, $0.922^{**}$) by shoot both at flowering and pod filling stages of the crop, respectively. It was concluded that BARI Motorshuti-l in symbiotic association with Rhizobium inoculant performed best in recording nitrogenase activity, dry matter production and N uptake by pea.

Isolation of an Indigenous Imidacloprid-Degrading Bacterium and Imidacloprid Bioremediation Under Simulated In Situ and Ex Situ Conditions

  • Hu, Guiping;Zhao, Yan;Liu, Bo;Song, Fengqing;You, Minsheng
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.11
    • /
    • pp.1617-1626
    • /
    • 2013
  • The Bacterial community structure and its complexity of the enrichment culture during the isolation and screening of imidacloprid-degrading strain were studied using denaturating gradient gel electrophoresis analysis. The dominant bacteria in the original tea rhizosphere soil were uncultured bacteria, Rhizobium sp., Sinorhizobium, Ochrobactrum sp., Alcaligenes, Bacillus sp., Bacterium, Klebsiella sp., and Ensifer adhaerens. The bacterial community structure was altered extensively and its complexity reduced during the enrichment process, and four culturable bacteria, Ochrobactrum sp., Rhizobium sp., Geobacillus stearothermophilus, and Alcaligenes faecalis, remained in the final enrichment. Only one indigenous strain, BCL-1, with imidacloprid-degrading potential, was isolated from the sixth enrichment culture. This isolate was a gram-negative rod-shaped bacterium and identified as the genus Ochrobactrum based on its morphological, physiological, and biochemical properties and its 16S rRNA gene sequence. The degradation test showed that approximately 67.67% of the imidacloprid (50 mg/l) was degraded within 48 h by strain BCL-1. The optimum conditions for degradation were a pH of 8 and $30^{\circ}C$. The simulation of imidacloprid bioremediation by strain BCL-1 in soil demonstrated that the best performance in situ (tea soil) resulted in the degradation of 92.44% of the imidacloprid (100 mg/g) within 20 days, which was better than those observed in the ex situ simulations that were 64.66% (cabbage soil), 41.15% (potato soil), and 54.15% (tomato soil).

Effect of a Common Medium on the Growth of Nitrogen Fixer Rhizobium and Phosphate Solubilizer Bacillus megaterium (질소고정균(Rhizobium)과 인산가용화균(Bacillus megaterium)의 동시배양을 위한 배양조건 탐색)

  • Poonguzhali, Selvaraj;Thangaraju, Muthu;Ryu, Jyung-Hyun;Madhaiyan, Munusamy;Chung, Keun-Yook;Sa, Tong-Min
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.38 no.1
    • /
    • pp.8-14
    • /
    • 2005
  • Mass culturing of two beneficial organisms used as biofertilizers for crops would reduce the risks in production and minimize the capital involved and this demands appropriate media that supports both organism and also selection of organisms that are not antagonistic to each other. A study was initiated to culture a nitrogen fixer (Rhizobium) and phosphate solubilizer (Bacillus megaterium) in a single medium and to study their growth patterns and shelf life in carrier. The growth of Rhizobium and Bacillus megaterium was assessed in different media and a slight modification in the traditional yeast extract mannitol media promoted the growth of both the organisms. The growth of the individual organisms in the modified medium was assessed by estimating the population at regular intervals and compared to their original medium. Maximum population of Rhizobium and phosphobacteria was at 60 hr when the phosphiobacteria inoculation of later was after 48 hr of Rhizobium inoculation. The shelf life of the individual inoculants in the inoculant containing both the organism in a sterile carrier base revealed no significant differences compared to individual organisms inoculated in a sterilized carrier. The population of both organisms in carrier based mixed inoculant remained at $10^8$ cells till 90 days.