• Title/Summary/Keyword: Rhizobium

Search Result 202, Processing Time 0.023 seconds

Studies on Analysis of Factors for Soybean Yield Increase in Newly Reclaimed Soil (신개지(新開地)에 있어서의 대두증수(大豆增收) 요인분석(要因分析)에 관(關)한 연구(硏究))

  • Cho, Jae-Yeung;Maeng, Do-Won
    • Applied Biological Chemistry
    • /
    • v.17 no.1
    • /
    • pp.31-41
    • /
    • 1974
  • This study was conducted to determine the effects of soybean cultivation on yield and other characters in a newly reclaimed soil. Four factois - (1) plant density (2) compost application (3) innoculation of nodule bacteria (Rhizobium japonicum) combined with lime application (4) NPK application-were examined in a 24 factorial experiments arranged in randomized complete block design with 4 replicates. Kangio variety was used and the results obtained are summarized as follows; (1) Dense plant population, Application of Compost and application of fertilizer (NPK) gave the yields 1.7, 1.4 and 2.1 times the check respectively. The Combinations of, dense $population{\times}compost$, dense $compost{\times}fertilizer$ (NPK), $population{\times}compost{\times}fertilizer$ (NPK), and dense $population{\times}compost{\times}nodule$ bacteria with $lime{\times}fertilizer$ (NPK) increased the yields by 2.0, 3.0, 2.6 and 5.4 times than the check respectively. But little effect on yield was noted in the treatment inoculated with nodule bacteria with lime. (2) In the case of higher yield, the increased weight of 100 seeds was found. (3) A markedly increased PH was observed in all of the plots under study after the completion of experiment. (4) The compost treatment and the ferttilizer (NPK) treatment greatly increased the organic matter, total nitrogen and the available phosphorus in the soil. (5) The variation in the grain yield appeared to have a close correlation with the content of available $P_2O_5$ in the soil.

  • PDF

Characteristics of Indigenous Rhizobium to Korean Soils III. Symbiotic Dynamics of Bradyrhizobium japonicum YCK Strains According to Their Competitive Conditions for Nodulation (우리나라 토착근류균(土着根瘤菌)의 제(諸) 특성(特性) 연구(硏究) III. 수종(數種) Bradyrhizobium japonicum YCK 균주(菌株)의 경합여부(競合與否)에 따른 공생효과 변이(變異))

  • Kang, Ui-Gum;Jung, Yeun-Tae;Ha, Ho-Sung;Somasegaran, Padma;Bohlool, B. Ben
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.26 no.4
    • /
    • pp.265-270
    • /
    • 1993
  • The symbiotic dynamics of Bradyrhiwbium japonicum YCK strains indigenous to Korean soils were investigated accordingly to their competitive conditions for nodulation. For this experiment the single strain inoculants of YCK strains and the mixed inoculants of one YCK strain and one USDA strain were applied to Korean Jangbaekkong and American Clark soybeans at mollisol soils(Torroxic Haplustoll, pH 6.8). The results were summarized as follows : 1. The symbiotic effectiveness of B. japonicum YCK strains was increased on the average of nitrogen accumulation by mixing with USDA strains, especially with strain USDA 110. 2. The effectiveness of each mixed inoculant was affected by soybean cultivar. 3. YCK strains occupied on the average of 83 and 86 % of the nodules against strain USDA 110 on Jangbaekkong and Clark soybeans, respectitvely. 4. The most effective strain among three YCK strains was strain YCK 213 as a single inoculant and was strain YCK 141 as a mixed inoculant with USDA strains. 5. The mixed inoculants of YCK strains and strain USDA 123 showed antagonism for nodulation.

  • PDF

Isolation, Root Colonization and Evaluation of Some Plant Growth-promoting Rhizobacteria in Paddy Rice

  • Kang, Ui-Gum;Park, Hyang-Mi;Ko, Jee-Yeon;Lee, Jae-Saeng;Jeon, Weon-Tai;Park, Chang-Young;Park, Ki-Do;Chebotar, Vladimir K.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.50 no.3
    • /
    • pp.135-149
    • /
    • 2017
  • In order to obtain promising rice growth-promoting microbial strains that can be used as substitutes for chemical fertilizers, 172 bacterial strains were isolated from rice roots grown in Korean and Russian soils. Out of them, the strains KR076, KR083, KR181 and RRj228 showed plant growth-promoting activities on maize seedlings. Bacillus megaterium KR076 and Bacillus sp. KR083 showed both nitrogen-fixing and plant growth-promoting activities, while Rhizobium sp. KR181 and Pseudomonas sp. RRj228 appeared to support only plant growth-promotion, but not $N_2$ fixation. Especially, RRj228 showed high growth promoting activity at low concentrations. Inoculation studies with KR083 and RRj228 revealed a high affinity to the Japonica rice variety such as Junambyeo than the Korean Tongil type variety such as Arumbyeo. Both KR083 and RRj228 strains showed rhizoplane and/or endophytic colonization in Japonica and Tongil types rice when soaked with the bacterial suspension of $1.1{\times}10^5cfu\;ml^{-1}$ for six and twelve hours. However, the total bacterial cell numbers were higher in the roots of Japonica variety than in the Tongil type. In inoculation trials with Daesanbyeo rice variety, the seedlings inoculated with KR181 and RRj228 at the rate of $2.0{\times}10^6cfu\;ml^{-1}$ showed yield increment of 35% and 33% (p < 0.01), respectively, so that they contributed to the replacement of chemical fertilizer at half doses of N, $P_2O_5$, and $K_2O$ in pots. In Junambyeo rice seedlings, the strain RRj228, when inoculated with a cell suspension of $1.8{\times}10^6cfu\;ml^{-1}$, promoted 3.4% higher yield at 70% dose than at a full dose level of N $110kg\;ha^{-1}$ in field. These results suggest that the rhizobacteria KR181 and RRj228 are prospective strains for enhancing rice performance.

Effects of Charcoal Powder on the Growth and Development of Red Pepper and the Changes of Soil Microflora (목탄분말 시용이 고추의 생육 및 토양미생물상 변화에 미치는 영향)

  • 김승환;이상민;이윤정;김한명;송석용;송범헌
    • Korean Journal of Organic Agriculture
    • /
    • v.11 no.3
    • /
    • pp.55-64
    • /
    • 2003
  • It was investigated the possibility to use charcoal powder as beneficial soil conditioner, which used frequently in environmentally friendly agricultural farming system. For this purpose, the effects of charcoal powder on the growth of red pepper and chemical and microbiological properties of soil were also determined. The application of charcoal powder resulted in no significant differences of pH and EC in the soil compared to those of control. However, small particle size of charcoal powder increased yield of red pepper while large charcoal powder resulted in decrease of root growth of red pepper. Furthermore, the application of charcoal powder resulted in changes of soil microflora relating to plant growth stage. The number of the nitrogen fixing bacteria and fungi increased at the early growth stage, while phosphate releasing fungi in the soil increased at the late stage of growth by charcoal powder application. These beneficial effect of charcoal powder on the soil microbial properties was larger by the use of smaller particle size of charcoal powder. Therefore, it indicated that the small size of charcoal powder might be more influential on the red pepper yield and soil microbial properties may be due to large capacity of nutrients uptake for the plant and microorganisms. Additionally the optimal application amount of charcoal powder for the red pepper could be suggested as much as 300kg 10a$^{-1}$ for the both purposes of improvement of crop yield and retardation of the nutrients accumulation by excess charcoal application.

  • PDF

Diversity, distribution, and antagonistic activities of rhizobacteria of Panax notoginseng

  • Fan, Ze-Yan;Miao, Cui-Ping;Qiao, Xin-Guo;Zheng, You-Kun;Chen, Hua-Hong;Chen, You-Wei;Xu, Li-Hua;Zhao, Li-Xing;Guan, Hui-Lin
    • Journal of Ginseng Research
    • /
    • v.40 no.2
    • /
    • pp.97-104
    • /
    • 2016
  • Background: Rhizobacteria play an important role in plant defense and could be promising sources of biocontrol agents. This study aimed to screen antagonistic bacteria and develop a biocontrol system for root rot complex of Panax notoginseng. Methods: Pure-culture methods were used to isolate bacteria from the rhizosphere soil of notoginseng plants. The identification of isolates was based on the analysis of 16S ribosomal RNA (rRNA) sequences. Results: A total of 279 bacteria were obtained from rhizosphere soils of healthy and root-rot notoginseng plants, and uncultivated soil. Among all the isolates, 88 showed antagonistic activity to at least one of three phytopathogenic fungi, Fusarium oxysporum, Fusarium solani, and Phoma herbarum mainly causing root rot disease of P. notoginseng. Based on the 16S rRNA sequencing, the antagonistic bacteria were characterized into four clusters, Firmicutes, Proteobacteria, Actinobacteria, and Bacteroidetesi. The genus Bacillus was the most frequently isolated, and Bacillus siamensis (Hs02), Bacillus atrophaeus (Hs09) showed strong antagonistic activity to the three pathogens. The distribution pattern differed in soil types, genera Achromobacter, Acidovorax, Brevibacterium, Brevundimonas, Flavimonas, and Streptomyces were only found in rhizosphere of healthy plants, while Delftia, Leclercia, Brevibacillus, Microbacterium, Pantoea, Rhizobium, and Stenotrophomonas only exist in soil of diseased plant, and Acinetobacter only exist in uncultivated soil. Conclusion: The results suggest that diverse bacteria exist in the P. notoginseng rhizosphere soil, with differences in community in the same field, and antagonistic isolates may be good potential biological control agent for the notoginseng root-rot diseases caused by F. oxysporum, Fusarium solani, and Panax herbarum.

Changes of Nitrogen-Fixation Activity and Environmental Factors of Growth in Lespedeza bicolor Turcz (싸리(Lespedeza bicolor Turcz.)의 공생 질소고정활성과 생육환경요인의 변화)

  • 송승달
    • Journal of Plant Biology
    • /
    • v.35 no.4
    • /
    • pp.317-322
    • /
    • 1992
  • The nitrogen fixation activity and environmental factors of Lespedeza bicli!oy Turcz, forming annual root nodules by symbiotic Rhizobium sp. were analyzed in the field conditions during the growing period. Seasunal changes of $N_2-fixation$ activity showed the maximum value of $120\;\mu\textrm{M}\;C_2_H4{\cdot}noduie\;g\;fw^{-1}{\cdot}hr^{-1}$ during the active growing period (June) and varied significantly depending on the growth phase and environmental factors. The maximum activities were attained at the conditions of pH 7, $30^{\circ}C$ of temperature, 18 Kpa of oxygen partial pressure and inhibited by water stress and nitrogen sources. The habitat soil was weak acidic and poor in nitrogen, phosphorus and organic matter contents. The leaf area ratios and chlorophyll contents were ranged from 442 to $48;\textrm{cm}^2{\cdot}g\;dw^{-1}$ and from 33 to $38\;\mu\textrm{g}\;chI{\cdot}\textrm{cm}^2$. Nitrogen contents in each organ showed the maximum of 46, 19 and $11\;mg{\cdot}g\;dw^{-1}, respectively for leaf, rool and stem in the early period. The highest phosphorus contents were 4.2, 1.2 and $0.6\;mg{\cdot}g\;dw^{-1}$, respectively for leaf. root and stem in early growing period. The allocation ratios of nitrogen quantity showed 60% for leaves and 73% for roots during the active and late growth period, and 22% [or stems in average. The allocalion ralios o[ phosphorus quantity showed 58% for leaves during the most productive period, 70% for roots in the pre-growth stage and 26% for stems in average.verage.

  • PDF

Inhibition of SKTI Synthesis in Agrobacterium rhizogenes-induced Hairy Root Reduces the Number of Nodule in Soybean (Kunitz Trypsin Inhibitor 발현 억제에 의한 콩 뿌리혹 수의 감소)

  • Kim, Sun-Hyung;Lim, Chae-Woo;Park, Ji-Young;Hwang, Cheol-Ho
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.54 no.3
    • /
    • pp.299-306
    • /
    • 2009
  • In nitrogen-limited conditions, rhizobia lead to formation of nitrogen-fixing nodules on the roots of leguminous plants. The process of nodulation is autoregulated by pre-existing nodules in the same root system. The altered profile of sap proteins by inoculation with B. japonicum may indicate presence of a signal responsible for autoregulation transferred through stem. The 20 kDa protein enhanced by innoculation significantly decreased in intensity from 2.5 to 7 days after inoculation (DAI). However 6 kDa protein did increase during such a transition period. Western blot analysis showed that both 20 kDa and 6 kDa were cross-reacted with the SKTI antiserum. This suggests that SKTI may be involved in soybean nodulation by specific induction and degradation in stem sap during early stage of nodulation. RNAi technique and Agrobacterium rhizogenes-mediated transformation were applied to investigate the function of SKTI in nodulation. We have found that the number of rhizobium-induced nodule was much less in SKTIi-silenced hairy roots than the non-silenced. Indeed the quantitative RT-PCR showed that the expression level of SKTI gene was reduced over 40% in the transgenic hairy roots compared to the non-transgenic. It appears that the observed early induction of SKTI and degradation into small peptide in a specific time manner may be involved in autoregulation of nodulation in soybean and the specific mechanism of such regulation remains to be investigated.

Nodulation and Growth of Trifolium subterraneum Cultivars as Affected by pH (Subterranean Clover 의 근류형성(根瘤形成)과 생장(生長)에 대한 pH의 영향(影響))

  • Kim, Moo-Key
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.22 no.2
    • /
    • pp.138-145
    • /
    • 1989
  • Little information is available on the effects of low pH on nodulation and growth of subterranean clover cultivars. Plants of 11 cultivars were inoculated with an acid-tolerant strain of Rhizobium trifolii and grown for 28 days in continuously flowing nitrogen-free nutrient solutions maintained at six constant pH values from 4.0 to 6.5. At pH 4.0, 4 cultivars failed to nodulate and the remainder formed only a few nodules; nodulation was delayed by 2 to 3 days in this treatment. All cultivars nodulated at pH 4.5 but, with the exception of cv. Dwalganup, nodule numbers were significantly less than at $pH{\geq}5.0$. Only in cvv. Clare and Woogenellup were nodule numbers significantly greater at pH 6.5 than at 5.0. Whole plant dry matter yields were strongly depressed at pH 4.0(21 to 33% of maximum). At pH 4.5, relative yields of all cultivars except Dwalganup were significantly depressed without significant reductions in nodule dry weights, suggesting that nodule function was inhibited by acidity. These results are consistent with the view that nodulation and growth of plants dependent on symbiotic nitrogen fixation are much more sensitive to low pH per se than is host plant growth in the presence of adequate mineral nitrogen.

  • PDF

Relationship between Number of Soil Micro-organisms and Change of Cropping System (답전(畓田) 윤환시(輪換時) 작부체계(作付體系)와 토양미생물상(土壤微生物相) 변화(變化)와의 관계(關係))

  • Lee, Sang-Kyu;Yun, Sei-Young;Kim, Seung-Hwan
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.25 no.1
    • /
    • pp.70-76
    • /
    • 1992
  • A field experiment was conducted to find out the influence of cropping systems under rotation of paddy-upland soil on soil microorganisms with specific reference to cations concentration in the soil. The results obtained was summarized as follows. 1. The number of soil bacteria and actinomycetes increased in fallow, continuous cultivation of rice and soybean while the number of fungi decreased. 2. Gram negative bacteria as Pseudomonas spp. and Rhizobium spp. remarkably incerased with increasing Gram positive bacteria of Bacillus subtilis in continuous cultivatio of soybean. 3. The relative population of soil born plant pathogen such as Fusarium spp. Rhizoctionia spp. and Phoma spp. to the total soil fungi was high in cultivation of potato and Chinese cabbage. The ratio of soil plant pathogen to the total soil fungi was high in cultivation of potato with Chinese cabbage. 4. The number of bacteria and actinomycetes was positively correlated with ratio of Ca+Mg/K in soil while negatively correlated with soil fungi.

  • PDF

Optimum Potting Medium and Nitrogen and Phosphorus Levels in the Soil for Root Nodule Formation in Black Locust (Robinia pseudoacacia L.) Seedlings (아까시나무(Robinia pseudoacacia L.) 유묘의 뿌리혹 형성에 적절한 배양토, 질소, 인 수준 구명에 관한 연구)

  • Lee, Kyung Joon;Lee, Hyun Ung;Kim, Taeyoo
    • Journal of Korean Society of Forest Science
    • /
    • v.101 no.3
    • /
    • pp.443-453
    • /
    • 2012
  • The objectives of this study were to find out proper potting medium and nutrient levels in the soil to promote the root nodule formation in black locust (Robinia pseudoacacia L.) seedlings. Commercial potting medium, compost, organic fertilizer, molded forest fertilizer, and compound fertilizer were used at different mixing rates to bring in various levels of mineral nutrients in the soil. Seedlings were grown in pots in a greenhouse for three months. Commercial potting medium containing peatmoss, vermiculite, and geolite was not suited for early nodule formation due to lack of nutrients, even though it produced good total dry weight. Compost was the best medium to promote both high total dry weight production and nodule formation with providing the proper levels of nitrogen and phosphorus in the soil. Molded forest fertilizer was acceptable for nodule formation. Compound fertilizer and organic fertilizer was not suited for nodule formation. The potting medium should contain optimum levels of nitrogen (0.05-0.2%) and phosphorus (100-600ppm) to promote early nodule formation in black locust seedlings.