Optimum Potting Medium and Nitrogen and Phosphorus Levels in the Soil for Root Nodule Formation in Black Locust (Robinia pseudoacacia L.) Seedlings

아까시나무(Robinia pseudoacacia L.) 유묘의 뿌리혹 형성에 적절한 배양토, 질소, 인 수준 구명에 관한 연구

  • Lee, Kyung Joon (Plant Clinic, Seoul National University) ;
  • Lee, Hyun Ung (Department of Forest Science, College of Agriculture, Life and Environment Sciences, Chungbuk National University) ;
  • Kim, Taeyoo (School of Forest Resources, College of Agriculture and Life Science, Seoul National University)
  • 이경준 (서울대학교 농업생명과학대학 식물병원) ;
  • 이현웅 (충북대학교 농업생명환경대학 산림학과) ;
  • 김태유 (서울대학교 농업생명과학대학 산림자원학부)
  • Published : 2012.09.30

Abstract

The objectives of this study were to find out proper potting medium and nutrient levels in the soil to promote the root nodule formation in black locust (Robinia pseudoacacia L.) seedlings. Commercial potting medium, compost, organic fertilizer, molded forest fertilizer, and compound fertilizer were used at different mixing rates to bring in various levels of mineral nutrients in the soil. Seedlings were grown in pots in a greenhouse for three months. Commercial potting medium containing peatmoss, vermiculite, and geolite was not suited for early nodule formation due to lack of nutrients, even though it produced good total dry weight. Compost was the best medium to promote both high total dry weight production and nodule formation with providing the proper levels of nitrogen and phosphorus in the soil. Molded forest fertilizer was acceptable for nodule formation. Compound fertilizer and organic fertilizer was not suited for nodule formation. The potting medium should contain optimum levels of nitrogen (0.05-0.2%) and phosphorus (100-600ppm) to promote early nodule formation in black locust seedlings.

본 연구는 아까시나무 유묘에서 뿌리혹 형성에 가장 적절한 배양토의 종류와 토양의 양료 수준을 구명하기 위해 수행하였다. 상업용 상토, 완숙 혹은 미숙 퇴비, 유기질 비료, 산림용 고형비료, 화학비료 등의 토양 첨가물을 이용하여 질소와 인의 수준을 다양하게 조절한 후 포트에 아까시나무 종묘를 식재하여 3개월 간 온실에서 실험을 실시하여 초기 뿌리혹 형성에 적절한 토양 환경을 조사하였다. 피트모스, 질석, 지올라이트를 함유한 상업용 상토는 높은 보수력으로 인해 초기 활착과 건중량 생산에는 적절하였으나 무기 양료 중 질소(0.052%), 인(91 ppm)의 부족으로 인해 뿌리혹 형성에는 부적합하였다. 퇴비는 미숙 퇴비이건 완숙퇴비이건 구별 없이 뿌리혹 형성에 가장 유리했는데, 질소(0.08-0.21%)와 인(141-1,228 ppm)의 함량이 적절하였지만, 칼륨(0.14-1.58 cmol/kg)의 함량은 부족한 편이었다. 화학(복합)비료는 토양 내 질소(0.14-0.21%), 인(406-618 ppm), 칼륨(1.39-3.13 cmol/kg)의 함량을 적절한 수준으로 유지하여 초기 건중량 생산에는 지장을 주지 않았지만 뿌리혹 형성에는 부적절하였다. 산림용 고형비료는 뿌리혹 형성에 적합한 반면, 유기질 비료는 뿌리혹 형성에 적합하지 않았다. 배양토에는 적절한 수준의 질소(0.05-0.2%)와 인(100-600 ppm)이 함유되어 있을 경우에 초기 뿌리혹 형성이 제대로 이뤄졌다. 아까시나무 유묘의 경우 토양의 질소와 인 중에서 질소보다 인이 초기의 뿌리혹 형성을 더 촉진하는 것으로 판단되었다.

Keywords

References

  1. 구현회. 2002. 이분해성 탄수화물 처리가 토양 무기태질소의 신속 감소. 국립한경대학교 석사논문.
  2. 김은호, 이경준, 이규화. 2006. Glomus 내생균근 접종이 인공산성우를 처리한 아까시나무 묘목의 생장, 광합성, 인 함량에 미치는 영향. 한국임학회지 95: 735-742.
  3. 농업과학기술원. 2000. 토양 및 식물체 분석법. 농촌진흥청. pp. 103.
  4. 농촌진흥청. 2003. 농업과학기술연구조사분석기준(안).
  5. 농촌진흥청. 2011. 비료의 품질검사 방법 및 시료채취기준. 고시 제2011-38호.
  6. 박태규, 송승달. 1995. 질소와 인의 처리에 따른 3종 콩과식물의 생장반응과 질소고정 활성의 조절. Journal of Environmental Science 9: 127-136.
  7. 박용구. 2008. 아까시나무. 유한사. 서울.
  8. 산림청. 2000. 산림과 임업기술II. pp. 85.
  9. 이경준. 2005. 수목생리학. 서울대학교 출판부. pp. 145-146.
  10. 이경준 2009. 아까시나무의 품종 특성 조사 요령(TG) 작성. 산림청 산림품종관리센터.
  11. 이경준, 이승제. 2003. 조경수식재관리기술. 서울대학교 출판문화원.
  12. 이기종, 이수열, 곽수란. 2005. 혼자서도 쉽게 하는 SPSS. 한국학술정보.
  13. 이돈구, 서민환, 주광영, 조재창. 1994. 한국 고산지대에 서 자라는 활엽수종의 임분 구조와 천연 갱신. 서울대학교 농과대학 연습림보고. Vol. 1994 No. 30. 52-72.
  14. 이돈구. 2012. 숲의 생태적 관리. 서울대학교 출판문화원. pp. 471.
  15. 이석하, 박현구, 윤순강, 황석중. 1991. 질소 수준이 알파파의 뿌리혹 형성 및 엽중 질산태 질소 환원 능력에 미치는 영향. 한국작물학회 학술발표대회 논문집. Vol. 36 No.2: 32-33.
  16. 장세영. 2006. 한글 SPSS 12.0 K를 이용한 통계조사분석 입문. 경문사.
  17. 한심희, 이경준, 현정오. 2001. 모래밭버섯 균근균으로 접종한 포플러 4개 수종 삽목묘의 체내 부위별 Cd과 Pb축적 특성. 한국임학회지 90: 495-504.
  18. Baldelli, C. 1992. Black locust as a source of energy. In: Hanover, J.W., Miller, K. and Plesko, S. (eds). Proc. of the Intern. Conf. on Black Locust: Biology, Culture and Utilization. Dept. of Forestry, Michigan State University, East Lansing, Michigan, USA. pp. 237-243.
  19. Batzli, J.M., Graves, J.M. and van Berkum, P. 1992. Diversity among rhizobia effective with Robinia pseudoacacia L. Applied and Environmental Microbiology 58: 2137-2143.
  20. Bongarten, B.C., Huber, D.A. and Apsley, D.K. 1992. Environmental and genetic influences on short-rotation biomass production of black locust (Robinia pseudoacacia L.) in the Georgia Piedmont. Forest Ecology and Management 55: 315-331. https://doi.org/10.1016/0378-1127(92)90108-L
  21. Boring, L.R. and Swank, W.T. 1984. The role of black locust (Robinia pseudoacacia) in forest succession. Journal of Ecology 72: 749-766. https://doi.org/10.2307/2259529
  22. Burner, D.M., Carrier, D.J., Belesky, D.P., Pote, D.H., Ares, A. and Clausen, E.C. 2008. Yield components and nutritive value of Robinia pseudoacacia and Albizia julibrissin in Arkansas, USA. Agroforest System 72: 51-62.
  23. Callaway, R.M., Bedmar, E.J., Reinhart, K.O., Silvan, C.G. and Klironomos, J. 2011. Effects of soil biota from different ranges on Robinia invasion: acquiring mutualists and escaping pathogens. Ecology 92: 1027-1035. https://doi.org/10.1890/i0012-9658-92-5-1027
  24. Deng, T.X. and Liu, G.F. 1991. Mathematical model of the relationship between nitrogen fixation by black locust and soil conditions. Soil Biology and Biochemistry 23: 1-7. https://doi.org/10.1016/0038-0717(91)90155-D
  25. Duncan, N.L.M., Levin, S.A. and Hedin, L.O. 2008. Evolutionary tradeoffs can select against nitrogen fixation and thereby maintain nitrogen limitation. Proceedings of National Academy of Science 105: 1573-1578. https://doi.org/10.1073/pnas.0711411105
  26. Ferrari, A.E. and Wall, L.G. 2007. Nodulation and growth of black locust (Robinia pseudoacacia) on a desurfaced soil inoculated with a local Rhizobium isolate. Biology and Fertility of Soils 43: 471-477. https://doi.org/10.1007/s00374-006-0125-2
  27. Forest Research Institute. 1996. Black locust growing in Hungary. Budapest, Hungary. 35p.
  28. Fuhrer, E. and Redei, K. 2003. Site requirements and stand establishment techniques for black locust (Robinia pseudoacacia L.) stands in Hungary. Proc. of XII World Forestry Congress, 2003. Quebec City, Canada.
  29. Han, K.H. and Park, Y.G. 1999. Somatic embryogenesis in black locust (Robinia pseudocacia L.). In: Somatic Embryogenesis in Woody Plants. Vol. 5. (Jain, S.M., Gupta, P.K. and Newton, R.J. eds). Pluwer Academic Publishers, Dordrecht, Netherlands.
  30. Hanover, J.W., Mebrathu, T. and Bloese, P. 1991. Genetic improvement of black locust: a prime agroforestry species. Forestry Chronicle 67: 227-231.
  31. Houlton, B.Z., Wang, Y.P., Vitousek, P.M. and Field, C.B. 2008. A unifying framework for dinitrogen fixation in the terrestrial biosphere. Nature 454: 327-334. https://doi.org/10.1038/nature07028
  32. Keresztesi, B. 1983. Breeding and cultivation of black locust (Robinia pseudoacacia L.) in Hungary. Forest Ecology and Management 6: 217-244. https://doi.org/10.1016/S0378-1127(83)80004-8
  33. Keresztesi, B. 1988. Black locust: the tree of agriculture. Outlook on Agriculture (UK) 17: 77-85.
  34. Lee, K.J. and Koo, C.D. 1983. Taxonomic distribution of ecto- and endomycorrhizae among woody species in Korea. Journal of Korean Forestry Society 59: 37-45.
  35. Lee, S.-E. and Lim, S.H. 1984. Studies on tip-burn of Chinese cabbage by ammonium toxicity. Journal of Korean Society of Soil Science and Fertilizer Vol 17, No. 4. 389-398.
  36. Malcolm, G.M., Bush, D.S. and Rice, S.K. 2008. Soil nitrogen conditions approach preinvasion levels following restoration of nitrogen fixing black locust (Robinia pseudoacacia) stands in a pine-oak ecosystem. Restoration Ecology 16: 70-78. https://doi.org/10.1111/j.1526-100X.2007.00263.x
  37. Moshki, A. and Lamersdorf, N.P. 2011. Growth and nutrient status of introduced black locust (Robinia pseudoacacia L.) afforestation in arid and semiarid areas of Iran. Research Journal of Environmental Sciences 5: 259-268. https://doi.org/10.3923/rjes.2011.259.268
  38. Pallardy, S.G. 2008. Physiology of Woody Plants (Third ed.). Academic Press. Sandiego, Calif.
  39. Reinsvold, R.J. and Pope, P.E. 1987. Combined effect of soil nitrogen and phosphorus on nodulation and growth of Robinia pseudoacacia. Canadian Journal of Forest Research 17: 964-969. https://doi.org/10.1139/x87-150
  40. Rice, S.K., Westerman, B. and Federici, R. 2004. Impacts of the exotic, nitrogen-fixing black locust (Robinia pseudoacacia) on nitrogen-cycling in a pine-oak ecosystem. Plant Ecology 174: 97-107.
  41. Sprent, J.I. and James, E.K. 2007. Legume evolution: Where do nodules and mycorrhizas fit in? Plant Physiology 144: 575-581. https://doi.org/10.1104/pp.107.096156
  42. Stringer, J.W. and Carpenter, S.B. 1986. Energy yield of black locust biomass fuel. Forest Science 32: 1049-1057.
  43. Udvardi, M.K. and Day, D.A. 1997. Metabolite transport across symbiotic membranes of legume nodules. Annual Review on Plant Physiology and Plant Molecular Biology 48:493-523. https://doi.org/10.1146/annurev.arplant.48.1.493
  44. Ulrich, A. and Zaspel, I. 2000. Phylogenetic diversity of rhizobial strains nodulating Robinia pseudoacacia L. Microbiology 146: 2997-3005.
  45. Young, J.A. and Young, C.G. 1992. Seeds of Woody Plants in North America. Dioscorides Press, Portland, Oregon. pp. 407.