Browse > Article

Inhibition of SKTI Synthesis in Agrobacterium rhizogenes-induced Hairy Root Reduces the Number of Nodule in Soybean  

Kim, Sun-Hyung (Department of Crop Science & Biotechnology, Dankook University)
Lim, Chae-Woo (Department of Crop Science & Biotechnology, Dankook University)
Park, Ji-Young (Department of Crop Science & Biotechnology, Dankook University)
Hwang, Cheol-Ho (Department of Crop Science & Biotechnology, Dankook University)
Publication Information
KOREAN JOURNAL OF CROP SCIENCE / v.54, no.3, 2009 , pp. 299-306 More about this Journal
Abstract
In nitrogen-limited conditions, rhizobia lead to formation of nitrogen-fixing nodules on the roots of leguminous plants. The process of nodulation is autoregulated by pre-existing nodules in the same root system. The altered profile of sap proteins by inoculation with B. japonicum may indicate presence of a signal responsible for autoregulation transferred through stem. The 20 kDa protein enhanced by innoculation significantly decreased in intensity from 2.5 to 7 days after inoculation (DAI). However 6 kDa protein did increase during such a transition period. Western blot analysis showed that both 20 kDa and 6 kDa were cross-reacted with the SKTI antiserum. This suggests that SKTI may be involved in soybean nodulation by specific induction and degradation in stem sap during early stage of nodulation. RNAi technique and Agrobacterium rhizogenes-mediated transformation were applied to investigate the function of SKTI in nodulation. We have found that the number of rhizobium-induced nodule was much less in SKTIi-silenced hairy roots than the non-silenced. Indeed the quantitative RT-PCR showed that the expression level of SKTI gene was reduced over 40% in the transgenic hairy roots compared to the non-transgenic. It appears that the observed early induction of SKTI and degradation into small peptide in a specific time manner may be involved in autoregulation of nodulation in soybean and the specific mechanism of such regulation remains to be investigated.
Keywords
nodulation; Kunitz trypsin inhibitor; SKTI; Hairy root transformation; soybean;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Birk, Y. 1961. Purification and some properties of a highly active inhibitor of trypsin and alpha-chymotrypsin from soybeans. Biochim. Biophys. Acta, 54, 378-381   DOI   ScienceOn
2 Caetano-Anolles, G. and Gresshoff, P. M. 1991. Plant genetic control of nodulation. Annu. Rev. Microbiol. 45 : 345-382   DOI   ScienceOn
3 Frattali, V. and Steiner, R. F. 1968. Soybean inhibitors. I. Separation and some properties of three inhibitors from commercial crude soybean trypsin inhibitor. Biochemistry. 7(2) : 521-530   DOI   ScienceOn
4 Lievens, S., Goormachtig, S., and Holsters, M. 2004. Noduleenhanced protease inhibitor gene: emerging patterns of gene expression in nodule development on Sesbania rostrata. J. Exp. Bot. 55(394) : 89-97   DOI   ScienceOn
5 Manen, J. -F., Simon, P., Van Slooten, J. -C., Osteras, M., Frutiger, S., and Hughes, G. J. 1991. A nodulin expressed in senescent nodules of winged bean is a protease inhibitor. Plant Cell 3 : 259-270   DOI   ScienceOn
6 Matsubayashi, Y., Yang, H., and Sakagami, Y. 2001. Peptide signals and their receptors in higher plants. Trends in Plant Sci. 6(12) : 573-7   DOI   ScienceOn
7 Nishimura, R., Hayashi, M., Wu, G. J., Kouchi, H., Imaizumi- Anraku, H., Murakami, Y., Kawasaki, S., Akao, S., Ohmori, M., Nagasawa, M., Harada, K., and Kawaguchi, M. 2002. HAR1 mediates systemic regulation of symbiotic organ development. Nature. 420 : 426-429   DOI   ScienceOn
8 Ott, T., van Dongen, J. T., Gunther, C., Krusell, L., Desbrosses, G., Vigeolas, H., Bock, V., Czechowski, T., Geigenberger, P., and Udvardi, M. K. 2005. Symbiotic leghemoglobins are crucial for nitrogen fixation in legume root nodules but not for general plant growth and development. Curr. Biol. 15 : 531-535   DOI   ScienceOn
9 Searle, I. R., Men, A. E., Laniya, T. S., Buzas, D. M., Iturbe-Ormaetxe, I., Carroll, B. J., and Gresshoff, P. M. 2003. Long-distance signaling in nodulation directed by a CLAVATA1-like receptor kinase. Science 299 : 109-112   DOI   PUBMED   ScienceOn
10 Vasse, J., de Billy, F., Camut, S., and Truchet, G. 1990. Correlation between ultrastructural differentiation of bacteroids and nitrogen fixation in alfalfa nodules. J Bacteriol. 172(8): 4295-4306   DOI   PUBMED
11 Westfall, R. J. and Hauge, S. M. 1948. The Nutritive Quality and the Trypsin Inhibitor Content of Soybean Flour Heated at Various Temperatures: Two Figures J. Nutr. 35 : 379-389   DOI
12 Geurts, R., Fedorova, E., and Bisseling, T. 2005. Nod factor signaling genes and their function in the early stages of Rhizobium infection. Curr. Opin. Plant Biol. 8 : 346-352   DOI   ScienceOn
13 Muller, M. and Schmidt, W. 2004. Environmentally Induced Plasticity of Root Hair Development in Arabidopsis. Plant Physiol. 134 : 409-419   DOI   ScienceOn
14 Gresshoff, P. M. and A. C. Delvels. 1986. Plant genetic approaches to symbiotic nodulation and nitrogen fixation in legumes. Plant Gene Research 3 : 159-206
15 Habu, Y., Fukushima, H., Sakata, Y., Abe, H., Funada, and R. 1996. A gene encoding a major Kunitz proteinase inhibitor of storage organs of winged bean is also expressed in the phloem of stems. Plant Mol. Biol. 32(6) : 1209-1213   DOI   ScienceOn
16 Limpens, E., Mirabella, R., Fedorova, E., Franken, C., Franssen, H., Bisseling, T., and Geurts, R. 2005. Formation of organellelike N2-fixing symbiosomes in legume root nodules is controlled by DMI2. Proc. Natl. Acad. Sci. USA 102 : 10375-10380   DOI   ScienceOn
17 McManus, M. T. and Sharp, P. A. 2002. Gene silencing in mammals by small interfering RNAs. Nat. Rev. Genet. 3 : 737-747   DOI   ScienceOn
18 Kim, M. Y., Van, K., Lestari, P., Moon, J. K., and Lee, S. H. 2005. SNP identification and SNAP marker development for a GmNARK gene controlling supernodulation in soybean. Theor Appl Genet. 110 : 1003-1010   DOI   ScienceOn
19 Crespi, M. and Galvez, S. 2000. Molecular mechanisms in root nodule development. J. Plant Growth Reg. 19 : 155-166   DOI
20 안진흥, 남홍길. 1999. 식물분자생물학연구법. 아카데미서적. pp. 97-114
21 Kunitz, M. 1945. Crystallization of a soybean trypsin inhibitor from soybean. Science 101 : 668-669   DOI   PUBMED
22 Rolfe, B. G., Mathesius, U., Djordjevic, M., Weinman, J., Hocart, C., Weiller, G., and Bauer, W. D. 2003. Proteomic analysis of legume-microbe interactions. Comparative and Functional Genomics 4 : 225-228   DOI   PUBMED   ScienceOn
23 Hymowitz, T. and N. Kaizuma. 1981. Soybean seed proteins electrophoresis profiles from 15 Asian countries or regions: hypotheses on paths of dissemination of soybeans from China. Economic Botany 35(1) : 10-23   DOI
24 Day, D. A., Price, G. D., and Udvardi, M. K. 1989. Membrane interface of the Bradyrhizobium japonicum-Glycine max symbiosis: peribacteroid membrane unit from soybean nodules. Aust J Plant Physiol. 16 : 69-84   DOI
25 Esseling, J. J. Lhuissier, F., Emons, A. M. C. 2003. Nod factor induced root hair curling: continuous polar growth toward the point of Nod factor application. Plant Physiol. 132 : 1982-1988   DOI   ScienceOn
26 Djordjevic, M. A., Oakes, M., Li, D. X., Hwang, C. H., Hocart, C. H., Gresshoff, P. M. 2007. The Glycine max xylem sap and apoplast proteome. J Proteome Res.6(9) : 3771-3779   DOI   ScienceOn
27 Hayashi, S., Gresshoff, P. M., and Kinkema, M. 2008. Molecular analysis of lipoxygenases associated with nodule development in soybean. Mol Plant Microbe Interact. 21(6) : 843-53   DOI   ScienceOn
28 Kereszt, A., Li, D., Indrasumunar, A., Mguyen G. DT, Nontachaiyapoom, S., Kinkema, M., and Gresshoff, P. M. 2007. Agrobacterium rhizogenes-mediated transformation of soybean to study root biology. Nature Protocols 2(4) : 948-952   DOI   PUBMED   ScienceOn
29 Udvardi, M. K. and Day, D. A. 1997. Metabolite transport across symbiotic membranes of legume nodules. Annu. Rev. Plant Physiol. Plant Mol. Biol. 48 : 493-523   DOI   ScienceOn
30 Waterhouse, P. M. and Helliwell, C. A. 2003. Exploring plant genomes by RNA-induced gene silencing. Nature. 4 : 29-38   DOI
31 Brewin, N. J. 2004. Plant cell wall remodelling in the Rhizobiumlegume symbiosis. Crit. Rev. Plant Sci. 23 : 293-316   DOI   ScienceOn