• Title/Summary/Keyword: Rheology Material

Search Result 146, Processing Time 0.029 seconds

Characteristics of ER Fluids with Different Electrode Gaps and Materials (전극재질 및 간긍에 따른 ER유체의 특성실험)

  • 최승복
    • The Korean Journal of Rheology
    • /
    • v.10 no.3
    • /
    • pp.165-172
    • /
    • 1998
  • 본논문에서는 전기장 부하에 따라 유동성질이 변화하는 ER유체의 빙햄특성을 실험 적으로 연구하였다. 특히 ER유체의 빙행특성에 영향을 주는 여러인자중 전극 간격 및 재질 에 따른 ER유체의 항복전단응력과 전류밀도의 변화를 온도에 따라 고찰하였다. 이를 위하 여 전극 간격을 가변시킬수 있는 전기 점도계를 세가지 재질로 자체 제작하였다. 전극간격 은 0.75 mm, 1.00mm 및 1.25 mm 로 설정하였으며 전극 재질은 스테인레스 스텔, 동 그리 고 기계구조용 탄소강(SMS45C)을 사용했다. 한편 실험에 사용된 ER유체는 자체 조성한 수 계 ER유체인 ERF-1과 외국의 우수하다고 알려진 비수계 ER유체인 ERF-2 두가지를 선택 하였다. 실험은 $25^{\circ}C$와 7$0^{\circ}C$ 및 10$0^{\circ}C$에서 수행하였으며 전기장은 0-4kV/mm 범위에서 온 도 및 ER유체의 종류에 따라 부하 가능한 전압까지 공급하였다. 전단변형률 50, 100, 150, 200, 400, 600, 800, 1000 및 1200 s-1에서 얻은 전단응력 실험결과로부터 최소오차선형법을 이용하여 전단변형률 영에서 동적 항복전단응력 값을 도출하였으며 그결과로부터 전극 간격 및 재질에 따른 ER효과의 변화를 고찰하였다. 또한 상온과 10$0^{\circ}C$에서 4kV/mm의 전기장을 부하하여 전기장에대한 ER유체의 응답특성을 실험을 수행했다.

  • PDF

Responses of structure to impulsive loading with application of viscoplasticity (점소성론을 이용한 구조물의 충격응답 해석)

  • 김상환
    • Computational Structural Engineering
    • /
    • v.8 no.3
    • /
    • pp.59-66
    • /
    • 1995
  • The dynamic responses of structure under impulsive loading have been investigated according to its duration, based on the theory of viscoplasticity which can appropriately represent the effects of plasticity and rheology simultaneously. The viscoplastic model has been implemented into the two-dimensional finite element system to solve plane stress, plane strain or axi-symmetric problems, and the implicit integration scheme, of which solutions are unconditionally stable for relatively large time step length, has been developed to simulate visoplastic straining with deriving the explicit relationship between stress and strain at a material point level. After simulation, one carefully concludes that the duration as well as magnitude of impulsive loading plays an important role in design of structures.

  • PDF

Study on Improvement of Cooking Rice Method for Acceleration of Consumption of the Rice (쌀소비 촉진을 위한 쌀밥 조리 개선 연구 (I) - 취반시 조리수에 산, 지방, Cellulose 첨가에 따른 texture 변화)

  • 김경자;양화영;오미향;구정선
    • Korean journal of food and cookery science
    • /
    • v.9 no.1
    • /
    • pp.25-29
    • /
    • 1993
  • This study was attempted to enhance taste and quality value of cooked rice by adding fat, vinegar, cellulose in cooking water. Cooked rice with five different levels of material in cooking water (100% water A: 10% vinegar B: 10% fat C: 10% fat and 10% vinegar D: 10% fat, 10% vinegar and 10% celloulose) was tested for rheology, fine structural changes, sensory evaluation, in vitro digestion. 1) Cooked rice by adding 10% fat rate was higher than A, B, D, E samples for softness, Jelly and increased in vitro digestion. 2) sensory evaluation conducted by tweenty university students a panelists showed that B, D sample were low value in flavour, texture and taste, but higher than A sample for softness, Jelly and in Vitro digestion. 3) E sample (l0% fat, 10%s vinegar, 10% cellulose) was more significant for taste, texture, and digestion than A sample. From these results, it was concluded that rice cooked with 10% of fat in cooking water was quite acceptable, in terms of practical food value consisting of palatability rheology and digestibility.

  • PDF

A Study on the Thermal Boundary Layer Flow of a Micropolar Fluid in the Vicinity of a Wedge (미세극성 유체 유동장에 놓여진 쐐기형 물체주위의 열경계층에 관한 연구)

  • 김윤제
    • The Korean Journal of Rheology
    • /
    • v.11 no.2
    • /
    • pp.122-127
    • /
    • 1999
  • The characteristics of thermal boundary layer flow of a micropolar fluid in the vicinity of a wedge has been studied with constant surface temperature. The similarity variables found by Falkner and Skan are employed to reduce the streamwise-dependence in the coupled nonlinear boundary layer equations. Numerical solutions are presented for the heat transfer characteristics with Pr=1 using the fourth-order Runge-Kutta method and their dependence on the material parameters is discussed. The distributions of dimensionless temperature and Nusselt number across the boundary layer are compared with the corresponding flow problems for a Newtonian fluid over wedges. Numerical results show that for a constant wedge angle with a given Prandtl number, Pr=1, the effect of increasing values of K results in an increasing thermal boundary thickness for a micropolar fluid, as compared with a Newtonian fluid. For the case of the constant material parameter K, however, the heat transfer rate for a micropolar fluid is lower than that of a Newtonian fluid.

  • PDF

In-Line Monitoring the Dispersion of Highly Energetic Material Simulant (고에너지 물질 시뮬란트의 분산도의 In-Line 모니터링)

  • Lee, Sangmook;Hong, In-Kwon;Ahn, Youngjoon;Lee, Jae Wook
    • Polymer(Korea)
    • /
    • v.38 no.3
    • /
    • pp.272-277
    • /
    • 2014
  • We studied in-line monitoring the dispersion of highly energetic material simulant by a twin screw extruder having a high temperature ultrasonic system. The simulant suspension system consisted of ethylene vinyl acetate and Dechlorane plus 25 as binder and filler, respectively. With increasing filling fraction, the ultrasonic velocity was not changed but the attenuation linearly decreased. It was possible to estimate the solid fraction of well dispersed suspension system by measuring ultrasonic attenuation. The ultrasonic attenuation of samples filled over 60 v% approached straight line with increasing filling fraction when the samples was extruded repeatedly. It was due to the enhanced dispersion of solid particles in the suspension system. It was believed that the degree of dispersion and filling fraction could be obtained by combination of on-line measurement like ultrasonic attenuation and off-line analysis like TGA and SEM with image analyzer.

Coalescence behavior of dispersed domains in binary immiscible fluid mixtures having bimodal size distributions under steady shear flow

  • Takahashi Yoshiaki;Kato Tsuyoshi
    • Korea-Australia Rheology Journal
    • /
    • v.17 no.3
    • /
    • pp.125-130
    • /
    • 2005
  • Coalescence process of binary immiscible fluid mixtures having bimodal size distributions, prepared by mixing two pre-sheared samples at different shear rates, ${\gamma}_{pre1}\;and\;{\gamma}_{pre2}$, under shear flow at a final shear rate, ${\gamma}_f$, are examined by transient shear stress measurements and microscopic observations in comparison with the results for simply pre-sheared samples having narrow size distributions (unimodal distribution samples). Component fluids are a silicone oil (PDMS) and a hydrocarbon-formaldehyde resin (Genelite) and their viscosities are 14.1 and 21.0 $pa{\cdot}sec$ at room temperature $(ca.\;20^{\circ}C)$, respectively. The weight ratio of PDMS: Genelite was 7:3. Three cases, $({\gamma}_{pre1}=7.2sec^{-1},\;{\gamma}_{pre2}=12.0sec^{-1}\;and\;{\gamma}_f=2.4sec^{-1}),\;({\gamma}_{pre1}=0.8sec^{-1},\;{\gamma}_{pre2}=4.0sec^{-1}\;and\;{\gamma}_f=2.4sec^{-1}),\;and\;({\gamma}_{pre1}=7.2sec^{-1},\;{\gamma}_{pre2}=12.0^sec^{-1}\;and\;{\gamma}_f=7.2sec^{-1})$ the first case, transient shear stress did not show any significant difference but domains larger than the initial state are observed at short times. In the latter cases, there exist undershoot of shear stress, reflecting existence of deformed large domains, which is confirmed by the direct observation. It is concluded that coalescence between large and small domains more frequently occur than coalescence between the domains with similar size in the bimodal distribution samples.

Kinematics of filament stretching in dilute and concentrated polymer solutions

  • McKinley, Gareth H.;Brauner, Octavia;Yao, Minwu
    • Korea-Australia Rheology Journal
    • /
    • v.13 no.1
    • /
    • pp.29-35
    • /
    • 2001
  • The development of filament stretching extensional rheometers over the past decade has enabled the systematic measurement of the transient extensional stress growth in dilute and semi-dilute polymer solutions. The strain-hardening in the extensional viscosity of dilute solutions overwhelms the perturbative effects of capillarity, inertia & gravity and the kinematics of the extensional deformation become increasingly homogeneous at large strains. This permits the development of a robust open-loop control algorithm for rapidly realizing a deformation with constant stretch history that is desired for extensional rheometry. For entangled fluids such as concentrated solutions and melts the situation is less well defined since the material functions are governed by the molecular weight between entanglements, and the fluids therefore show much less pronounced strain-hardening in transient elongation. We use experiments with semi-dilute/entangled and concentrated/entangled monodisperse polystyrene solutions coupled with time-dependent numerical computations using nonlinear viscoelastic constitutive equations such as the Giesekus model in order to show that an open-loop control strategy is still viable for such fluids. Multiple iterations using a successive substitution may be necessary, however, in order to obtain the true transient extensional viscosity material function. At large strains and high extension rates the extension of fluid filaments in both dilute and concentrated polymer solutions is limited by the onset of purely elastic instabilities which result in necking or peeling of the elongating column. The mode of instability is demonstrated to be a sensitive function of the magnitude of the strain-hardening in the fluid sample. In entangled solutions of linear polymers the observed transition from necking instability to peeling instability observed at high strain rates (of order of the reciprocal of the Rouse time for the fluid) is directly connected to the cross-over from a reptative mechanism of tube orientation to one of chain extension.

  • PDF

A Study on Deformation Behavior of the Grain-Size Controlled Rheology Material by Using Nanoindenter and AFM (나노인덴터와 원자력간 현미경을 이용한 결정립 제어 레오로지 소재의 변형거동에 관한 연구)

  • 윤성원;김정원;강충길
    • Transactions of Materials Processing
    • /
    • v.13 no.4
    • /
    • pp.374-381
    • /
    • 2004
  • In this study, the deformation behavior of semi-solid Al-Si alloy was investigated by nanoindenter as a part of the research on the surface crack behavior in thixoformed automobile component. The microstructure of semi-solid Al-Si alloy consists of primary and eutectic regions. In eutectic regions the crack initiation begins with initial fracture of the eutectic silicon particles and inside other intermetallic phases. Nano-deformation characteristics in the eutectic and primary phase of semi-solid aluminium alloy were investigated through the nano-indentation experiments and the AFM observation. In addition, mechanical properties of each region were investigated and compared with each other.

Forging Process with Al6061 Alloy Rheology Material by Electromagnetic Stirring System (전자교반을 응용한 Al6061 레오로지 소재의 단조공정)

  • Kang, S.S.;Oh, S.W.;Kang, C.G.
    • Transactions of Materials Processing
    • /
    • v.16 no.6
    • /
    • pp.443-446
    • /
    • 2007
  • The semi-solid process has been developed near net-shape components for kinds of methods. Thixo-forming with reheating prepared billet and rheo-forming with cooled melt until semi-solid state. Material is applied electromagnetic stirring system to slurry with aluminum 6061 alloy. An experiment has variation factors which are pressure, solid-fraction, stirring current and stirring time. The mechanical properties are compared to forge sample with to apply heat treatment T6. This study is researched function a virtual pressure and fine shape zone. Optimum pressure is found to prevent defect of porosity.

A Numerical Study of Sandwich Injection Mold Filling Process (샌드위치 사출성형의 충전 공정 해석에 대한 수치모사 연구)

  • 송효준;이승종
    • The Korean Journal of Rheology
    • /
    • v.11 no.2
    • /
    • pp.159-167
    • /
    • 1999
  • Sandwich injection molding is one of the remarkable polymer processes recently developed from conventional injection molding. But it is almost impossible to do theoretical investigation that we've researched it through numerical simulation. In this paper, numerical simulation on the study of sandwich injection molding is based on Finite Element Method and FAN/Control Volume method. In addition to conventional filling parameter that can confirm skin polymer melt front, new filling parameters have been introduced to confirm core polymer melt front advancement. These filling parameters are defined in each layer which is divided to solve temperature field along the thickness direction. One can notice different filling patterns resulted from the variation of material properties such as viscosities and power-law indexes, and processing conditions such as switch-over times and wall temperatures. It gives us a better understanding of the sandwich injection molding process. And we can recognize that it's the core polymer spatial distribution after the completion of filling that is the most important key point to use this process for industrial molding process.

  • PDF