• Title/Summary/Keyword: Rheological model

Search Result 385, Processing Time 0.026 seconds

Self Diffusions and Rheological Properties of Polyamide Polymer Materials in Various Solvents (용매 환경에서의 폴리아미드 고분자 재료의 자체확산과 유변학적인 특성)

  • Kim, Nam Jeong
    • Journal of the Korean Applied Science and Technology
    • /
    • v.36 no.4
    • /
    • pp.1050-1059
    • /
    • 2019
  • The self diffusion, hole volume, and flow thermodynamic parameters of polyamide fibers were calculated from rheological parameters and crystallite size in order to study of flow segments in amorphous region. The stress relaxation of polyamide filament fibers were carried out in air and various solvents at various temperatures using the tensile tester with the solvent chamber. The rheological parameters were obtained by applying the experimental stress relaxation curves to the theoretical equation of the Ree-Eyring and Maxwell non-Newtonian model. It was observed that the rheological parameters of these polyamide filament fibers are directly related to the relaxation spectra, self diffusion, viscosities, and activation energies of flow segments.

1/4 Car Vibration Simulation Using An Empirical MR Damper Model (실험적 MR댐퍼 모델을 사용한 1/4차량 진동 시뮬레이션)

  • Baek, Woon-Kyung;Yang, Bo-Suk;Lee, Jong-Seok;Kang, Tae-Ho;Ryu, Sung-Won
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.638-643
    • /
    • 2005
  • This study is about a semi-active quarter car simulation method including a MR(magneto-rheological) damper. The MR damper was modeled as Spencer model that can capture nonlinear and hysteretic behavior. The parameters of the Spencer model were extracted from a random excitation test and optimum treatment of the test data. Then, a suspension control algorithm based on Sky-hook theory was applied for the quarter car simulation. Also, an experiment was dong using a quarter car simulator to confirm the simulation results with the Spencer MR damper model

  • PDF

The Behavior of Undrained Pore Water Pressure in Normally Consolidated and Saturated Clay(II) - Visco Elastic Analysis Model - (포화된 정규압밀 점성토에서 비배수 공극수압의 거동(II) - 점탄성 해석 모델 -)

  • 임성훈
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.45 no.4
    • /
    • pp.137-143
    • /
    • 2003
  • The initial condition of $\Delta \sigma_3 \;=\; \Delta u$ is used for analyzing the time dependent behavior of ground. This is based on the concept that the coefficient of pore water B is the unity on the condition of saturation. but some measured consolidation data in the field showed that the pore water pressure was not dissipated as time elapsed but it was maintained constant value or it's dissipation rate was slower than that of the predicted. and so the measured data of pore water pressure was not consistent with that of settlement. In this study, the rheological model for the pore water pressure behavior on undrained condition was induced and compared with the experiment data of the literature. The result showed that the suggested model was consistent well with the result of experiment, but the suggested model could not explain the effect of the decrease of void ratio according to consolidation.

1/4 Car Vibration Simulation Using an Empirical MR Damper Model (실험적 MR댐퍼 모델을 사용한 1/4 차량 진동 시뮬레이션)

  • Yang, Bo-Suk;Lee, Jong-Seok;Kang, Tae-Ho;Ryu, Sung-Won;Baek, Woon-Kyung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.9 s.102
    • /
    • pp.1016-1022
    • /
    • 2005
  • This study is about a semi-active quarter car simulation method including a MR(magneto-rheological) damper. The MR damper was modeled as Spencer model that can capture nonlinear and hysteretic behavior. The parameters of the Spencer model were extracted from a random excitation test and optimum treatment of the test data. Then, a suspension control algorithm based on Sky-hook theory was applied for the quarter car simulation. Also, an experiment was done using a quarter car simulator to confirm the simulation results with the Spencer MR damper model.

A Study on Tribological Properties of Magneto-Rheological Fluid (MRF) in Polishing Process (연마공정에서 MR 유체의 트라이볼로지적 성질에 대한 연구)

  • Lee S.O.;Jang K.I.;Min B.K.;Lee S.J.;Seok J.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.497-498
    • /
    • 2006
  • Tribological properties of a Magneto-Rheological(MR) fluid in a polishing process are studied. For this polishing process, abrasive wear model is proposed as a function of shear force, normal force and actual mean velocity of MR particles at workpiece surface. Experimental conditions are changed by varying the gap distance between workpiece and tool and the rotational speed of tool. From the experimental results, a modified Stribeck curve is obtained, and the friction coefficient turns out to have linear relationship with a modified Sommerfeld number. The validity of the wear model is supported by additional experiments performed for measuring material removal rates.

  • PDF

Relations between rheological and mechanical properties of fiber reinforced mortar

  • Cao, Mingli;Li, Li;Xu, Ling
    • Computers and Concrete
    • /
    • v.20 no.4
    • /
    • pp.449-459
    • /
    • 2017
  • Fresh and hardened behaviors of a new hybrid fiber (steel fiber, polyvinyl alcohol fiber and calcium carbonate whisker) reinforced cementitious composites (HyFRCC) with admixtures (fly ash, silica fume and water reducer) have been studied. Within the limitations of the equipment and testing program, it is illustrated that the rheological properties of the new HyFRCC conform to the modified Bingham model. The relations between flow spread and yield stress as well as flow rate and plastic viscosity both conform well with negative exponent correlation, justifying that slump flow and flow rate test can be applied to replace the other two as simple rheology measurement and control method in jobsite. In addition, for the new HyFRCC with fly ash and water reducer, the mathematical model between the rheological and mechanical properties conform well with the quadratic function, and these quadratic function curves are always concave upward. Based on mathematical analysis, an optimal range of rheology/ flowability can be identified to achieve ideal mechanical properties. In addition, this optimization method can be extended to PVA fiber reinforced cement-based composites.

Cashew Nut Oil: Extraction, Chromatographic and Rheological Characterisation.

  • Vincent Okechuwku ANIDIOBU;Chioma Oluchi ANIDIOBU
    • The Korean Journal of Food & Health Convergence
    • /
    • v.9 no.4
    • /
    • pp.11-18
    • /
    • 2023
  • Oil was extracted from cashew nuts. The physicochemical parameters of the oil were determined. A chromatographic assay of the oil was carried out using Gas Chromatography-Mass Spectrometry. Seventeen compounds were detected: Phenol, Phenol 2-methyl-, Cyclohexene 4, 4-dimethyl-, m-Fluoro-2-diazoacetophenone 4-dimethyl-, Tetradecanoic acid, Phenol 4-octyl-, n-Hexadecanoic acid. Others are 9, 12-Octadecadienoic acid (Z, Z) - methyl ester, Hexadecanoic acid methyl ester, Methyl stearate, Dodecanoic acid methyl ester, 9, 12, 15-Octadecatrienoic acid methyl ester, 9, 12, 15-Octadecatrienoic acid (Z, Z, Z)-, Oleic acid, Octadecanoic acid, Tetracosanoic acid and 9-Octadecenoic acid methyl ester. Among the components are omega three and omega six essential free fatty acids. The rheological profiling and flow properties of cashew nut oil were determined using a Programmable Rheometer. Cashew nut oil exhibits slight dilatant behaviour at the low end of shear rate. The long chain and high molecular weight of its constituents controlled its rheology. Long-chained 9-Octadecenoic acid methyl ester, 9, 12-Octadecadienoic acid (Z, Z) - methyl ester, Tetracosanoic acid and methyl stearate, coupled with their high molecular weights are responsible for the shear thickening effect observed. Two models, Carreau-Yasuda and Ostwald-de Waele Power Law were employed to fit the rheological data. The Carreau-Yasuda model followed well the data.

Rheological Properties of Garlic Juice and its Concentrate (마늘 착즙 및 농축액의 Rheological Properties)

  • Kim, Byeong-Sam;Park, Noh-Hyun;Park, Moo-Hyun;Han, Bong-Ho;Bae, Tae-Jin
    • Korean Journal of Food Science and Technology
    • /
    • v.22 no.6
    • /
    • pp.646-650
    • /
    • 1990
  • To develop a new form of spice material by concentration of garlic juice, its rheological properties were investigated. In the temperature range of $15\;to\;65^{\circ}C$, the garlic juice with the solid content of $32\;to\;60^{\circ}Brix$ was considered as a pseudoplastic fluid. Flow and consistency indices of the juice interpreted by power-law equation varied from $0.9937\;to\;0.6130\;and\;0.0041\;to\;3.1886Pa{\;s^n$, respectively. Apparent viscosity was lineally decreased as shear rate was increased. Activation energy for the flow of the garlic juice changed in the range of 11,216 to 23,195 kJ/kg mol.

  • PDF

A Rheological Study on Creep Behavior of Clays (점토(粘土)의 Creep 거동(擧動)에 관한 유변학적(流變學的) 연구(研究))

  • Lee, Chong Kue;Chung, In Joon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.1 no.1
    • /
    • pp.53-68
    • /
    • 1981
  • Most clays under sustained load exhibit time-dependent deformation because of creep movement of soil particles and many investigators have attempted to relate their findings to the creep behavior of natural ground and to the long-term stability of slopes. Since the creep behavior of clays may assume a variety of forms depending on such factors as soil plasticity, activity and water content, it is difficult and complicated to analyse the creep behavior of clays. Rheological models composed of linear springs in combination with linear or nonlinear dashpots and sliders, are generally used for the mathematical description of the time-dependent behavior of soils. Most rheological models, however, have been proposed to simulate the behavior of secondary compression for saturated clays and few definitive data exist that can evaluate the behavior of non-saturated clays under the action of sustained stress. The clays change gradually from a solid state through plastic state to a liquid state with increasing water content, therefore, the rheological models also change. On the other hand, creep is time-dependent, and also the effect of thixotropy is time-function. Consequently, there may be certain correlations between creep behavior and the effects of thixotropy in compacted clays. In addition, the states of clay depend on water content and hence the height of the specimen under drained conditions. Futhermore, based on present and past studies, because immediate elastic deformation occurs instantly after the pressure increment without time-delayed behavior, the factor representing immediate elastic deformations in the rheological model is necessary. The investigation described in this paper, based on rheological model, is designed to identify the immediate elastic deformations and the effects of thixotropy and height of clay specimens with varing water content and stress level on creep deformations. For these purposes, the uniaxial drain-type creep tests were performed. Test results and data for three compacted clays have shown that a linear top spring is needed to account for immediate elastic deformations in the rheological model, and at lower water content below the visco-plastic limit, the effects of thixotropy and height of clay specimens can be represented by the proposed rheological model not considering the effects. Therefore, the rheological model does not necessitate the other factors representing these effects. On the other hand, at water content higher than the visco-plastic limit, although the state behavior of clays is visco-plastic or viscous flow at the beginning of the test, the state behavior, in the case of the lower height sample, does not represent the same behavior during the process of the test, because of rapid drainage. In these cases, the rheological model does not coincide with the model in the case of the higher specimens.

  • PDF

A Study on the Control of Vehicle Suspension by using Electro-Rheological Fluid via FLC Technique (FLC를 이용한 전기유전유체를 사용한 차량현가장치의 제어에 관한 연구)

  • Kim, Haak-Kyun;Heo, Hoon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.203-208
    • /
    • 1996
  • This paper consider the control for the vehicle suspension system using electro-rheological damper. The study is performed by using of FLC(Fuzzy Logic Controller). The model used in the simulation is quarter car and the road disturbance is regarded as white noise random process with zero mean. Proposed control technique shows good agreement compared with the result from the conventional on-off/bang-bang type control technique.

  • PDF