• 제목/요약/키워드: Rheological behavior

검색결과 466건 처리시간 0.025초

Preparation and rheological behavior of polystyrene/multi-walled carbon nanotube composites by latex technology

  • Woo, Dong-Kyun;Kim, Byung-Chul;Lee, Seong-Jae
    • Korea-Australia Rheology Journal
    • /
    • 제21권3호
    • /
    • pp.185-191
    • /
    • 2009
  • Polystyrene/multi-walled carbon nanotube (PS/MWCNT) composites were prepared by the use of latex technology. The monodisperse PS latex was synthesized by an emulsifier-free emulsion polymerization from styrene/potassium persulfate/water system in the presence of ethanol. The MWCNTs were first treated with acid mixture to eliminate impurities, dispersed in deionized water driven by ultrasonicator, and then mixed with the PS latex. From these mixtures, PS/MWCNT composites were prepared by freeze-drying and subsequent compression molding. In the small-amplitude oscillatory shear experiments, both complex viscosity and storage modulus increased with increasing MWCNT content. A pronounced effect of MWCNT content was observed, resulting in larger storage modulus and stronger yield behavior at low frequencies when compared to unmodified PS. It showed a transition from viscous to elastic behavior with increasing MWCNT content. Over the MWCNT content of 3 wt%, the storage modulus was higher than the loss modulus across all frequencies.

Morphology and Rheology on the Blends of PLA/CMPS

  • Shin, Boo-Young;Jo, Gyu-Soon;Kang, Kyoung-Su;Lee, Tae-Jin;Kim, Bong-Shik;Lee, Sang-Il;Song, Jeong-Sup
    • Macromolecular Research
    • /
    • 제15권4호
    • /
    • pp.291-301
    • /
    • 2007
  • The rheological behaviors and morphologies of polylactide (PLA) and chemically modified plasticized starch (CMPS) blends were investigated. For this study, oscillatory shear flow measurements of the PLA, CMPS and their blends were performed. A scanning electron microscope (SEM) study was also conducted on the extracted extrudates of the blends. The morphology of the blend changed in relation to the composition: sphere-shaped CMPS disperse/continuous PLA, rod-like deformed CMPS phase/continuous PLA, a co-continuous structure with bridged CMPS long rods and PLA dispersed/continuous CMPS. The composition of the phase inversion could be estimated and closely coincided from the observed morphology experimental results. The rheological behavior of the blends, from oscillatory measurements, was found to vary in relation to the composition, and reflected the morphologies of the blends. PLA showed Newtonian flow behavior, while CMPS showed strong shear thinning behavior. The relationships between the morphology and rheological properties were observed in detail.

Surface Properties of Silane-Treated Titania Nanoparticles and Their Rheological Behavior in Silicone Oil

  • Hwang, Joon-Sik;Lee, Jeong-Woo;Chang, Yoon-Ho
    • Macromolecular Research
    • /
    • 제13권5호
    • /
    • pp.409-417
    • /
    • 2005
  • The surface of rutile titania nanoparticles was chemically modified by reacting with alkoxy silane. The surface and rheological properties in silicone oil having a wide range of viscosity were investigated. Total surface free energy($\gamma_S$) of the titania particles decreased from 53.12 to 26.94 mJ/$m^2$ as the silane used for surface treatment was increased from 0 to 5.0 wt$\%$. The surface free energy of neat silane was 25.5 mJ/$m^2$, which is quite close to that oftitania particles treated with 5.0 wt$\%$ silane. Due to the hydrophobic nature oftreated-titania, the contact angle was accordingly higher for polar solvent in the order of water>ethylene glycol> formamide>$\alpha$-bromonaphthalene. In sum of rheological behavior, as the applied shear stress or viscosity of the silicone oil increased, the titania particles tend to form layers and agglomerated clusters, showing shear-thinning and shear-thickening behaviors, sequentially. A good dispersion of discrete titania particles obeying a Newtonian flow behavior was achieved at a surface energy or low concentration of silane-treated titania particles in hydrophobic silicone oil.

Computer Simulation for Die Filling Behavior of Semi-Solid Slurry of Mg Alloy

  • Lee, Dock-Young;Moon, Jung-Hwa;Seok, Hyun-Kwang;Kim, Sung-Bin;Kim, Ki-Bae
    • 한국주조공학회지
    • /
    • 제27권1호
    • /
    • pp.31-35
    • /
    • 2007
  • 본 연구에서는 Mg합금의 반응고성형 공정기술을 개발하기 위하여 여러 가지 전단속도와 냉각속도에 따른 Mg합금의 점도와 딕소트러픽 거동을 분석하였으며, 이를 전산모사연구와 비교 검토하였다. 전산모사연구에서는 미세조직과 공정변수를 고려한 반응고 슬러리의 유변학적 거동을 분석하였다. 반응고 온도영역에서의 Mg합금(AZ91D) 슬러리의 점도는 고상율에 따라 지수함수적으로 증가하였으며, 전단속도가 증가하면 감소하는 경향을 나타났다. Mg합금 슬러리의 유변학적 거동을 정확하게 분석하기 위하여 Carreau 모델을 사용하여 ANYCAST 프로그램에서 고압다이캐스팅용 금형으로의 Mg합금 반응고 슬러리의 충진거동을 모사하였다. 전산모사된 결과는 동일한 조건에서의 실제 실험결과와 잘 일치하였다.

졸겔법에 의한 알루미나 섬유의 제조 (I) 유동학적 특성분석 (The Preparation of Alumina Fiber by Sol-Gel Method (I) Rheological Properties)

  • 최용수;이종혁;이해욱;김창은
    • 한국세라믹학회지
    • /
    • 제32권1호
    • /
    • pp.17-24
    • /
    • 1995
  • The TEA complex polymeric sol was prepared by the alkoxide sol-gel method. The purpsoe of this experiment was to vefity the particle shape in the sol from the investigation of the rheological properties. TEA retarded hydrolysis rate by the reaction with alkoxide enough to make a stable transparent sol in the wide range of composition. From the results of the viscosity change with time, the optimum mole ratio for spinning was selected as 0.5 mole of TEA, 3 mole of H2O and the optimum viscosity was 104 cPs. The rheological behavior of the sol showed that the particle shape in the sol was linear, which was adequate for fiber drawing.

  • PDF

아라빅 검 성분의 ER유체에 대한 내구성 평가 (Durability Estimation for ER(Electro-Rheological) Fluids of Arabic Gum Components)

  • 김옥삼;박우철
    • 동력기계공학회지
    • /
    • 제5권4호
    • /
    • pp.61-66
    • /
    • 2001
  • Electro-Rheological(ER) fluids undergo a phase-change when subjected to an external electric field, and this phase-change typically manifests itself as a many-order-of magnitude change in the rheological behavior. This paper presents experimental results on material properties for an ER fluids of arabic gum components subjected to electrical fatigues. As a first step, ER fluids are made of arabic gum 25% of particle weight-concentration. Following the construction of test mechanism for estimated durability of ER fluid, the dynamic yield stress, shear stress and current density of the ER fluids are experimentally distilled as a function of DC electric field. The durability estimation of operated ER fluids are distilled and compared with those of unused ER fluids. In addition, the surface roughness of the employed electrode for copper and aluminum are evaluated as a function of the number of the electric-field cycles.

  • PDF

Rheological Properties of Binder Pastes for Self-Compacting Concrete

  • Park, Yon-Dong
    • KCI Concrete Journal
    • /
    • 제13권1호
    • /
    • pp.35-41
    • /
    • 2001
  • This paper investigated rheological properties of binder pastes for self-compacting high performance concrete. Six mixtures of self-compacting concrete were initially prepared and tested to estimate self-compacting property. Then, the binder pastes used in self-compacting concrete were tested for rheological properties using a rotary type rheometer. Binder pastes with different water-binder ratios arid flow values were also examined to evaluate their rheological characteristics. The binders were composed of ordinary Portland cement, fly ash, two types of pulverized blast-furnace slag, and limestone powder. The flow curves of binder pastes were obtained by a rotary type rheometer with shear rate control. Slump flow, O-funnel time, box, and L-flow teats were carried out to estimate self-compacting property of concrete. The flow curves of binder pastes for self-compacting concrete had negligible yield stresses and showed an approximately linear behavior at higher shear rates beyond a certain limit. Test results also indicated that the binders incorporating fly ash are more appropriate than the other types of binders in quality control of self-compacting concrete.

  • PDF

Penetration behavior of biopolymer aqueous solutions considering rheological properties

  • Ryou, Jae-Eun;Jung, Jongwon
    • Geomechanics and Engineering
    • /
    • 제29권3호
    • /
    • pp.259-267
    • /
    • 2022
  • The rheological and penetration characteristics of sodium alginate and xanthan gum aqueous solutions were analyzed for the development of biopolymer-based injection materials. The results of viscosity measurements for the rheological characteristics analysis show that all aqueous biopolymer solutions exhibit a tendency for shear-thinning, i.e., the apparent viscosity decreases as the shear rate increases. In addition, a regression analysis using several models (Power-law, Casson, Sisko, and Cross) was applied to the shear-thinning fluid analysis results, the highest accuracy was determined by applying the power-law model. The micromodel experiment for the penetration characteristics analysis determined that all biopolymer aqueous solutions show higher pore saturation than water, and that pore saturation tends to increase as the flow rate and concentration increases. When comparing the rheological and penetration characteristics of the biopolymer aqueous solution used in this study, the xanthan gum aqueous solution showed a fully developed shear-thinning tendency, unlike the sodium alginate aqueous solution. This tendency is considered to have the advantage of enhancement injectability and pore saturation.

Rheological properties of arabinogalactan solutions related to the carbohydrate composition of different legumes

  • Kyeongyee Kim;Choon Young Kim
    • 한국식품저장유통학회지
    • /
    • 제30권5호
    • /
    • pp.785-796
    • /
    • 2023
  • The aim of this study was to elucidate chemical structures and rheological properties of arabinogalactans (AGs) isolated from three legumes including black gram (BG), great northern bean (GNB), and California small white bean (CSWB). The ratio of galactose to arabinose (G/A) in three legumes increased in the order of BG > GNB > CSWB. The rheological measurements of 1-5% (w/v) AG solutions revealed Newtonian and non-Newtonian flow behaviors. BG exhibited yield stress, indicating plastic behavior. Small-amplitude oscillatory tests indicated viscoelastic properties of BG, GNB, and CSWB ranging from solid-like, paste-like, and liquid-like behaviors, respectively. Small-strain oscillatory tests were conducted to assess the structure recovery of the AGs after pre-shearing. G" values of BG and GNB increased, but those of CSWB remained constant after shearing. These results suggest that the chemical structures of the AGs, particularly their G/A ratios, influence their rheological properties.

Physicochemical and Rheological Properties of a Novel Emulsifier, EPS-R, Produced by the Marine Bacterium Hahella chejuensis

  • Yim Joung Han;Kim Sung Jin;Aan Se Hoon;Lee Hong Kum
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제9권5호
    • /
    • pp.405-413
    • /
    • 2004
  • The rheological properties of an exopolysaccharide, EPS-R, produced by the marine bacterium Hahella chejuensis strain 96CJ 10356 were investigated. The $E_{24}$ of $0.5\%$ EPS-R was $89.2\%$, which was higher than that observed in commercial polysaccharides such as xanthan gum ($67.8\%$), gellan gum ($2.01\%$) or sodium alginate ($1.02\%$). Glucose and galactose are the main Sugars in EPS-R, with a molar ratio of ${\~}1:6.8$, xylose and ribose are minor sugar components. The average molecular mass, as determined by gel filtration chromatography, was $2.2{\times}10^3$ KDa, The intrinsic viscosities of EPS-R were calculated to be 16.5 and 15.9 dL/g using the Huggins and Kraemer equations, respectively, with a 2.3 dL/g overlap. In terms of rigidity, the conformation of EPS-R was similar to that of caboxymethyl cellulose ($5.0{\times}10^{-2}$). The rheological behavior of EPS-R dispersion indicated that the formation of a structure intermediate between that of a random-coil polysaccharide and a weak gel. The aqueous dispersion of EPS-R at concentrations ranging from 0.25 to $1.0\%$ (w/w) showed a marked shear-thinning property in accordance with Power-law behavior. In aqueous dispersions of $1.0\%$ EPS-R, the consistency index (K) and flow behavior index (n) were 1,410 and 0.73, respectively. EPS-R was Stable to pH and salts.