DOI QR코드

DOI QR Code

Rheological properties of arabinogalactan solutions related to the carbohydrate composition of different legumes

  • Received : 2023.09.16
  • Accepted : 2023.10.10
  • Published : 2023.10.30

Abstract

The aim of this study was to elucidate chemical structures and rheological properties of arabinogalactans (AGs) isolated from three legumes including black gram (BG), great northern bean (GNB), and California small white bean (CSWB). The ratio of galactose to arabinose (G/A) in three legumes increased in the order of BG > GNB > CSWB. The rheological measurements of 1-5% (w/v) AG solutions revealed Newtonian and non-Newtonian flow behaviors. BG exhibited yield stress, indicating plastic behavior. Small-amplitude oscillatory tests indicated viscoelastic properties of BG, GNB, and CSWB ranging from solid-like, paste-like, and liquid-like behaviors, respectively. Small-strain oscillatory tests were conducted to assess the structure recovery of the AGs after pre-shearing. G" values of BG and GNB increased, but those of CSWB remained constant after shearing. These results suggest that the chemical structures of the AGs, particularly their G/A ratios, influence their rheological properties.

Keywords

Acknowledgement

The authors would like to thank Arvind Raghothama for providing the AG composition data. This study was funded by the Research Grant of Seoil University.

References

  1. Barnes HA. Thixotropy: A review. J Nonnewton Fluid Mech, 70, 1-33 (1997) https://doi.org/10.1016/S0377-0257(97)00004-9
  2. Beltran O, De Pinto GL, Rincon F, Picton L, Cozic C, Le Cerf D, Muller G. Acacia macracantha gum as a possible source of arabinogalactan-protein. Carbohydrate Polym, 72, 88-94 (2008) https://doi.org/10.1016/j.carbpol.2007.07.027
  3. Borner GHH, Lilley KS, Stevens TJ, Dupree P. Identification of glycosylphosphatidylinositol-anchored proteins in arabidopsis. A proteomic and genomic analysis. Plant Physiol, 132, 568-577 (2003) https://doi.org/10.1104/pp.103.021170
  4. Bradbury AGW, Halliday DJ. Chemical structures of green coffee bean polysaccharides. J Agri Food Chem, 38, 389-392 (1990) https://doi.org/10.1021/jf00092a010
  5. Castellani O, Guibert D, Al-Assaf S, Axelos M, Phillips GO, Anton M. Hydrocolloids with emulsifying capacity. Part 1: Emulsifying properties and interfacial characteristics of conventional (Acacia senegal (l.) willd. Var. Senegal) and matured (Acacia (sen) super gumTM) acacia senegal. Food Hydrocoll, 24, 193-199 (2010)
  6. Estevez JM, Kieliszewski MJ, Khitrov N, Somerville C. Characterization of synthetic hydroxyproline-rich proteoglycans with arabinogalactan protein and extensin motifs in arabidopsis. Plant Physiol, 142, 458-470 (2006) https://doi.org/10.1104/pp.106.084244
  7. Fevzioglu M, Hamaker BR, Campanella OH. Gliadin and zein show similar and improved rheological behavior when mixed with high molecular weight glutenin. J Cereal Sci, 55, 265-271 (2012) https://doi.org/10.1016/j.jcs.2011.12.002
  8. Fischer M, Reimann S, Trovato V, Redgwell RJ. Polysaccharides of green arabica and robusta coffee beans. Carbohydr Res, 330, 93-101 (2001) https://doi.org/10.1016/S0008-6215(00)00272-X
  9. Khatkar BS, Bell AE, Schofield JD. The dynamic rheological properties of glutens and gluten sub-fractions from wheats of good and poor bread making quality. J Cereal Sci, 22, 29-44 (1995) https://doi.org/10.1016/S0733-5210(05)80005-0
  10. Kieliszewski MJ, Lamport DTA. Extensin: Repetitive motifs, functional sites, post-translational codes, and phylogeny. Plant J, 5, 157-172 (1994) https://doi.org/10.1046/j.1365-313X.1994.05020157.x
  11. Li X, Fang Y, Al-Assaf S, Phillips GO, Nishinari K, Zhang H. Rheological study of gum arabic solutions: Interpretation based on molecular self-association. Food Hydrocoll, 23, 2394-2402 (2009) https://doi.org/10.1016/j.foodhyd.2009.06.018
  12. Li X, Fang Y, Zhang H, Nishinari K, Al-Assaf S, Phillips GO. Rheological properties of gum arabic solution: From newtonianism to thixotropy. Food Hydrocoll, 25, 293-298 (2011) https://doi.org/10.1016/j.foodhyd.2010.06.006
  13. Mahendran T, Williams PA, Phillips GO, Al-Assaf S, Baldwin TC. New insights into the structural characteristics of the arabinogalactan-protein (agp) fraction of gum arabic. J Agri Food Chem, 56, 9269-9276 (2008) https://doi.org/10.1021/jf800849a
  14. Mellinger CG, Cipriani TR, Noleto GR, Carbonero ER, Oliveira MBM, Gorin PaJ, Iacomini M. Chemical and immunological modifications of an arabinogalactan present in tea preparations of Phyllanthus niruri after treatment with gastric fluid. Int J Biol Macromol, 43, 115-120 (2008) https://doi.org/10.1016/j.ijbiomac.2008.04.001
  15. Mothe CG, Rao MA. Rheological behavior of aqueous dispersions of cashew gum and gum arabic: Effect of concentration and blending. Food Hydrocoll, 13, 501-506 (1999)
  16. Oliveira AJBD, Cordeiro LMC, Goncalves RaC, Ceole LF, Ueda-Nakamura T, Iacomini M. Structure and antiviral activity of arabinogalactan with (1→6)-β-d-galactan core from stevia rebaudiana leaves. Carbohyd Polym, 94, 179-184 (2013) https://doi.org/10.1016/j.carbpol.2012.12.068
  17. Redgwell RJ, Curti D, Fischer M, Nicolas P, Fay LB. Coffee bean arabinogalactans: Acidic polymers covalently linked to protein. Carbohydrate Res, 337, 239-253 (2002) https://doi.org/10.1016/S0008-6215(01)00316-0
  18. Redgwell RJ, Schmitt C, Beaulieu M, Curti D. Hydrocolloids from coffee: Physicochemical and functional properties of an arabinogalactan-protein fraction from green beans. Food Hydrocoll, 19, 1005-1015 (2005)
  19. Rumpagaporn P, Kaur A, Campanella OH, Patterson JA, Hamaker BR. Heat and pH stability of alkali-extractable corn arabinoxylan and its xylanase-hydrolyzate and their viscosity behavior. J Food Sci, 77, H23-H30 (2012)
  20. Sanchez C, Renard D, Robert P, Schmitt C, Lefebvre J. Structure and rheological properties of acacia gum dispersions. Food Hydrocoll, 16, 257-267 (2002) https://doi.org/10.1016/S0268-005X(01)00096-0
  21. Sanchez C, Schmitt C, Kolodziejczyk E, Lapp A, Gaillard C, Renard D. The acacia gum arabinogalactan fraction is a thin oblate ellipsoid: A new model based on small-angle neutron scattering and ab initio calculation. Biophysical J, 94, 629-639 (2008) https://doi.org/10.1529/biophysj.107.109124
  22. Tryfona T, Liang HC, Kotake T, Tsumuraya Y, Stephens E, Dupree P. Structural characterization of arabidopsis leaf arabinogalactan polysaccharides. Plant Physiol, 160, 653-666 (2012) https://doi.org/10.1104/pp.112.202309
  23. Weinbreck F, Wientjes RHW, Nieuwenhuijse H, Robijn GW, De Kruif CG. Rheological properties of whey protein/gum arabic coacervates. J Rheol, 48, 1215-1228 (2004) https://doi.org/10.1122/1.1795191
  24. Xu J, Tan L, Lamport DTA, Showalter AM, Kieliszewski MJ. The o-hyp glycosylation code in tobacco and arabidopsis and a proposed role of hyp-glycans in secretion. Phytochemistry, 69, 1631-1640 (2008) https://doi.org/10.1016/j.phytochem.2008.02.006
  25. Yadav MP, Manuel Igartuburu J, Yan Y, Nothnagel EA. Chemical investigation of the structural basis of the emulsifying activity of gum arabic. Food Hydrocoll, 21, 297-308 (2007) https://doi.org/10.1016/j.foodhyd.2006.05.001
  26. Yang Y, Campanella OH, Hamaker BR, Zhang G, Gu Z. Rheological investigation of alginate chain interactions induced by concentrating calcium cations. Food Hydrocoll, 30, 26-32 (2013) https://doi.org/10.1016/j.foodhyd.2012.04.006
  27. Zhang P, Zhang Q, Whistle RL. L-arabinose release from arabinoxylan and arabinogalactan under potential gastric acidities. Cereal Chem, 80, 252-254 (2003) https://doi.org/10.1094/CCHEM.2003.80.3.252