• Title/Summary/Keyword: Rhamnolipid biosurfactant

검색결과 25건 처리시간 0.03초

해양 유래 Pseudomonas aeruginosa BYK-2(KCTC 18012P)가 생산하는 Biosurfactant의 구조분석

  • 이경미;김학주;하순득;강양순;공재열
    • 한국생물공학회:학술대회논문집
    • /
    • 한국생물공학회 2000년도 추계학술발표대회 및 bio-venture fair
    • /
    • pp.626-629
    • /
    • 2000
  • The Pseudomonas aeruginosa BYK-2(KCTC 18012p) produced three kinds of glycolipids on olive oil as a substrate and purified two types of major glycolipids(Rf=0.48, BS-1; Rf=0.65, BS-2) using silica gel chromatography, TLC, HPLC, etc. From the analysis of the chemical structure, the glycolipid of BS-1 was estimated as rhamnolipid($2-O-{\alpha}-L-rhamnopyranosyl- {\alpha}-L-rhamnopyranosyl-{\beta}-hydroxyldecanoyl-{\beta}-hydroxydecanoic$ acid; M.W. 650) and BS-2 was detected as rhamnolipid methyl ester($2-O-{\alpha}-L-rhamnopyranosyl-{\alpha}-L-rhamnopyranosyl-{\beta}-hydroxyldecanoyl-{\beta}-hydroxydecanoic$ acid methyl ester; M.W. 664) by FT-IR, FAB Mass spectrometry, $^1H-NMR$, $^{13}C$ FT-NMR, DEPT, 2D-NMR (TOCSY, RELAY, NOESY, HSQC, HMBC). In particular, It was found that a marine bacterium Pseudomonas aeruginosa BYK-2(KCTC 18012P) remarkably produced rhamnolipid and rhamnolipid methyl ester simultaneously.

  • PDF

Biosurfactant 생산균주 Pseudomonas aeruginosa F722의 배양특성 (Cultural Characteristics of a Biosurfactant-Producing Microorganism Pseudomonas aeruginosa F722)

  • 정선용;오경택;강창민
    • 한국미생물·생명공학회지
    • /
    • 제31권2호
    • /
    • pp.171-176
    • /
    • 2003
  • 생물계면활성제 생성균주, Pseudomonas aeruginosa F722를 이용하여 다양한 배양조건과 배지조성에서 생물계면활성제 생산성을 검토하였다. 질소원과 탄소원을 검토하기 전에는 P. aeruginosa F722의 생물계면활성제 생산량은 0.78 g/l이었다. 하지만, 질소원과 탄소원을 검토한 후에는 생물계면활성제 생산량이 2배 증가한 1.66g/l이었다. 무기질소원으로 $_NH4$Cl 또는 $NaNO_2$를 첨가하였을 때 생물계면활성제 활성에 효과적이었으며 유기질소원으로는 yeast extract 또는 tryptone을 첨가하였을 때 생물계면활성제 활성이 높았다. 이중 무기 질소원으로 0.05% $NH_4$Cl , 유기 질소원으로 0.1% yeast extract를 질소원으로 첨가하였을 때 가장 최적이었다. 탄소원으로 소수성 기질(n-alkane) 또는 친수성 기질(glucose, glycol)을 첨가하여 생물계면활성제 생산량을 조사하였는데 소수성 기질보다는 친수성 기질인 3.0% glucose를 첨가하였을 때 생물계면활성제 생산량이 높았다. 이때의 탄소원/질소원 비율은 17~20이었다. P. aeruginosa F722는 배양조건 3.0% glucose, 0.05% $NH_4$Cl, 0.1% yeast extract, $35^{\circ}C$, pH 7.0, C/N ratio 20, 5 days에서 생물계면활성제 생산량은 1.66g/l이였다. 질소원이 결핍 후 탄소원을 첨가하여 배양하였을 때가 질소원과 탄소원을 함께 첨가하여 배양했을 때보다 생물계면활성제 생산속도 및 균체 생장속도가 높았다. 최적 배양조건하에서 얻어진 배양액의 표면장력은 30mN/m이었다.

Characteristics of Microbial Biosurfactant as an Antifungal Agent Against Plant Pathogenic Fungus

  • YOO DAL-SOO;LEE BAEK-SEOK;KIM EUN-KI
    • Journal of Microbiology and Biotechnology
    • /
    • 제15권6호
    • /
    • pp.1164-1169
    • /
    • 2005
  • Characteristics of sophorolipid and rhamnolipid were evaluated as antifungal agents against plant pathogenic fungi. Eight percent of mycelial growth of plant pathogen (Phytophthora sp. and Pythium sp.) was inhibited by 200 mg/l of rhamnolipid or 500 mg/l of sophorolipid, and zoospore motility of Phytophthora sp. decreased by $90\%$ at 50 mg/l of rhamnolipid and $80\%$ at 100 mg/l of sophorolipid. The effective concentrations for zoospore lysis were two times higher than those of zoospore motility inhibition. The highest zoospore lysis was observed with Phytophthora capsici; $80\%$ lysis at 100 mg/I of di-rhamnolipid or lactonic sophorolipid, showing the dependency of structure on the lysis. In the pot test, the damping-off disease incidence ratio decreased to $42\%\;and\;33\%$ of control value at 2,000 mg/l sophorolipid and rhamnolipid, respectively. These results showed the potential of microbial glycolipid biosurfactants as an effective antifungal agent against damping-off plant pathogens.

Glycolipid Biosurfactants Produced by Pseudomonas aeruginosa D2D2 from Diesel-Contaminated Soil

  • MOON, HYE-JOON;YOUNG-KUONG LIM;HEE-SIK KIM;DAE-YOUNG KWON;WOOK-JIN CHUNG
    • Journal of Microbiology and Biotechnology
    • /
    • 제12권3호
    • /
    • pp.371-376
    • /
    • 2002
  • A biosurfactant-producing bacterial strain was selected from diesel-contaminated soil by measuring the oil-film collapsing activity and identified as Pseudomonas aeruginosa D2D2. When glucose and olive oil were used as carbon sources, 11.46 g/1 of biosurfactant was obtained. Based on TLC analysis, the biosurfactant produced from P. aeruginosa D2D2 was identified as a glycolipid, consisting of two types of biosurfactants (Type I and Type II). The purified glycolipid reduced the surface tension of the culture from 72 dyne/cm to 27 dyne/cm. The hydrophilic and hydrophobic moiety of the biosurfactant were rhamnose and ${\beta}$-hydroxydecanoic acid, as determined by FAB-MS and NMR analyses, respectively.

Pseudomonas sp. Sw1이 생산하는 Biosurfactant의 조성 및 특성 (Compositional Analysis and Some Properties of Biosurfactant from Pseudomonas sp. SW1)

  • 석완수;임은경;손홍주;이건;이상준
    • 한국미생물·생명공학회지
    • /
    • 제27권1호
    • /
    • pp.41-45
    • /
    • 1999
  • A tentative composition and some properties of biosurfactants, type I and type II, from Pseudomonas sp. SW1 are described. Biosurfactant type I and II are soluble in water, dichloromethane, chloroform, and a mixture of chloroform and methanol, respectively. The UV absorption spectrum of biosurfactants showed three characteristic peaks in the range of 212, 250 and 365nm, respectively. As a result of IR spectroscopy, GC/MS analysis and biochemical analysis, biosurfactant type I was a polymeric biosurfactant containing carbohydrate, lipid and protein. The carbohydrate was characterized as rhamnose. The lipid part consists of $C_{14}-C_{23}$ fatty acid when analyzed by GC/MS. The biosurfactant type II was a rhamnolipid consisting of carbohydrate and lipid.

  • PDF

Pseudomonos fluorescens PD101이 생산하는 생물유화제 특성 (Characterization of Biosurfactant Produced by Pseudomonas fluorescens PD101)

  • 윤홍묵;문성훈;송영환
    • 한국수산과학회지
    • /
    • 제36권3호
    • /
    • pp.230-238
    • /
    • 2003
  • Biosurfactant-producing bacteria, showing strong crude oil degrading activity, were isolated from the caverns of National Oil Storage Basement. From the results of biochemical and molecular biological tests, the isolate was identified as Pseudomonas fluorescens PD101. It grows well on liquid media at temperature range from $20^{\circ}C\;to\;37^{\circ}C,$ but it does not produce biosurfactant when grown at $37^{\circ}C$ or at higher temperature. The biosurfactant was stable at broad pH range from 5 to 11 and under heat treatment condition of $100^{\circ}C$ for 30 min. The biosurfactant produced dark blue halo around the colony when grown on SW agar plates, which could confirm the biosurfactant as one of rhamnolipid group. The 700 bp of PCR product could be amplified from DNA of P. flurorescens PD101 by using PCR primers designed from rh1A gene of P. aeruginosa, and it showed $99\%$ of sequence homology with rh1A gene of P. aeruginosa encoding rhamnosyltransferase 1.

Characterization of a Blend-Biosurfactant of Glycolipid and Lipopeptide Produced by Bacillus subtilis TU2 Isolated from Underground Oil-Extraction Wastewater

  • Cheng, Fangyu;Tang, Cheng;Yang, Huan;Yu, Huimin;Chen, Yu;Shen, Zhongyao
    • Journal of Microbiology and Biotechnology
    • /
    • 제23권3호
    • /
    • pp.390-396
    • /
    • 2013
  • Biosurfactants have versatile properties and potential industrial applications. A new producer, B. subtilis TU2, was isolated from the underground oil-extraction wastewater of Shengli Oilfield, China. Preliminary flask culture showed that the titer of biosurfactant obtained from the broth of TU2 was ~1.5 g/l at 48 h (718 mg/l after purification), with a reduced surface tension of 32.5 mN/m. The critical micelle concentration was measured as 50 mg/l and the surface tension maintained stability in solution with 50 g/l NaCl and 16 g/l $CaCl_2$ after 5 days of incubation at $70^{\circ}C$. FT-IR spectra exhibited the structure information of both glycolipid and lipopeptide. MALDI-TOF-MS analyses confirmed that the biosurfactant produced by B. subtilis TU2 was a blend of glycolipid and lipopeptide, including rhamnolipid, surfactin, and fengycin. The blended biosurfactant showed 86% of oil-washing efficiency and fine emulsification activity on crude oil, suggesting its potential application in enhanced oil recovery.

Pseudomonas sp. EP-3 rhamnolipid 에 의한 진딧물 살충성 생산을 위한 유자씨앗 부산물의 재활용 (Reuse of Yuza Seed By-product for Production of Aphicidal Rhamnolipid by Pseudomonas sp. EP-3)

  • 임다정;박태현;양시영;김진철;김인선
    • 한국환경농학회지
    • /
    • 제36권1호
    • /
    • pp.36-42
    • /
    • 2017
  • BACKGROUND: Yuza seed by-product has been produced in a large amount from the agricultural farms in the southern area of Korea. It has been mostly abandoned after commercial process for the production of juice, jam and tea. The study on the reuse of the yuza seed by-product has received much attention as a bio-resource material for the production of active compound in agriculture. METHODS AND RESULTS: Insecticidal rhamnolipid-producing Pseudomonas sp. EP-3 was grown in mineral salt media with the yuza seed by-product at 2, 20, 50 and 100 g/L. The growth of EP-3 was accompanied by a increase in insecticidal activity against green peach aphid. The highest insecticidal activity was observed when EP-3 was grown in the medium containing 50 g/L of the seed sample, producing approximately 996 mg/L of rhamnolipid at 96 h. Palmitic acid, stearic acid, oleic acid and linoleic acid were determined as the major fatty acids of the seed sample. The EP-3 cultures grown on the fatty acid mixture extracted from the seed sample showed a aphid mortality similar to that of cultures grown on the seed sample. The EP-3 cultures grown on 50 g/L of the seed sample showed aphid mortality more than 90% under greenhouse conditions. CONCLUSION: This study suggested that the yuza seed by-product may be used as a renewable material for microbial production of rhamnolipid against green peach aphid.

Gene Cloning and Partial Sequencing of Pseudomonas aeruginosa EMSI and KH7 rhamonolipid gene

  • 이근희;손명화;차미선;이상준
    • 한국환경과학회:학술대회논문집
    • /
    • 한국환경과학회 2002년도 봄 학술발표대회 발표논문집
    • /
    • pp.445-447
    • /
    • 2002
  • 본 연구는 환경친화적인 biosurfactant를 생산하는 Pseudomonas aeruginosa EMS1 and KH7를 rhamnolipid의 rhlR, rhlA, rhlB를 기초로한 primer를 이용하여 752bp, 802pb, 1280bp pcr을 수행하였으며 $pGEM^{(R)}$ / - T Easy Vector gene cloning 하여 Pseudomonas aeruginosa EMS1 and KH7의 Partial Sequencing를 서로 비교하였다. 이들 실험을 통하여 Pseudomonas aeruginosa의 유전적 구조 및 특성을 비교하여 유전적 조작을 위한 기초적인 자료가 되도록 한다.

  • PDF

Selection and Characterization of Pseudomonas aeruginosa EMS1 Mutant strain Showing Enhanced Biosurfactant Production

  • Cha, Mi-Sun;Lee, Kuen-Hee;Lee, Na-Eun;Lee, Sang-Joon
    • 한국생물공학회:학술대회논문집
    • /
    • 한국생물공학회 2003년도 생물공학의 동향(XIII)
    • /
    • pp.434-437
    • /
    • 2003
  • A new bacterial strain, was isolated from activated sludge, identified and named P. aeruginosa EMS1. The new strain produced surface-active rhamnolipids by batch cultivation in mineral salts medium with waste flying oils. The mutant strain KH7, designated P. aeruginosa EMS1, derived by random mutagenesis with N-methyl-N-nitro-N-nitrosogoanidine treatment producing high levels of the biosurfactants was selected by an ion-pair plate assay. The mutant strain KH7 showed 4-5 times more hydrocarbon emulsification as compared to the parent when grown on waste frying oils and various hydrocarbons. Furthermore, P. aeruginosa EMS1 and mutant strain KH7 was also able to use whey as a co-substrate for growth and biosurfactant production. As results of this study, mutant strain KH7 is a very efficient biosurfactant producer, and its culture conditions are relatively inexpensive and economical. Rhamnolipid is synthesized by the rhlAB-encoded rhamnosyltransferase. To be convinced of these genes, we performed PCR based on P. aeruginosa PAO1 whole-genome database. rhl gene cluster nucleotide and amino acid sequences were compared for both parent and mutant. Comparison of nucleotide sequence of rhlAB, there were usually terminal's codons exchange.

  • PDF