• Title/Summary/Keyword: Rh1

Search Result 1,823, Processing Time 0.026 seconds

Effects of Recombinant Human Epidermal Growth Factor on the Proliferationand Radiation Survival of Human Fibroblast Cell Lines in Vitro (재조합 표피성장인자가 방사선이 조사된 섬유아세포 증식에 미치는 영향)

  • Kim, Hyun-Sook;Kang, Ki-Mun;Lee, Sang-Wook;Na, Jae-Boem;Chai, Gyu-Young
    • Radiation Oncology Journal
    • /
    • v.24 no.3
    • /
    • pp.179-184
    • /
    • 2006
  • [ $\underline{Purpose}$ ]: To explore the effect of recombinant human EGF on the proliferation and survival of human fibroblast cell lines following irradiation. $\underline{Materials\;and\;Methods}$: Fibroblast was originated human skin and primary cultured. The trypan blue stain assay and MTT assay were used to study the proliferative effects of EGF on human fibroblast cell lines in vitro. An incubation of fibroblasts with rhEGF for 24 hours immediately after irradiation was counted everyday. Cell cycle distributions were analyzed by FACS analysis. $\underline{Results}$: Number of fibroblast was significantly more increased rhEGF (1.0 nM, 10 nM, 100 nM, 1,000 nM) treated cell than control after 8 Gy irradiation. Most effective dose of rhEGF was at 160 nM. These survival differences were maintained at 1 week later. Proportion of S phase was significantly increased on rhEGF treated cells. $\underline{Conclusion}$: rhEGF cause increased fibroblast proliferation following irradiation. We expect that rhEGF was effective for radiation induced wound healing.

Glycosyltransformation of ginsenoside Rh2 into two novel ginsenosides using recombinant glycosyltransferase from Lactobacillus rhamnosus and its in vitro applications

  • Wang, Dan-Dan;Kim, Yeon-Ju;Baek, Nam In;Mathiyalagan, Ramya;Wang, Chao;Jin, Yan;Xu, Xing Yue;Yang, Deok-Chun
    • Journal of Ginseng Research
    • /
    • v.45 no.1
    • /
    • pp.48-57
    • /
    • 2021
  • Background: Ginsenoside Rh2 is well known for many pharmacological activities, such as anticancer, antidiabetes, antiinflammatory, and antiobesity properties. Glycosyltransferases (GTs) are ubiquitous enzymes present in nature and are widely used for the synthesis of oligosaccharides, polysaccharides, glycoconjugates, and novel derivatives. We aimed to synthesize new ginsenosides from Rh2 using the recombinant GT enzyme and investigate its cytotoxicity with diverse cell lines. Methods: We have used a GT gene with 1,224-bp gene sequence cloned from Lactobacillus rhamnosus (LRGT) and then expressed in Escherichia coli BL21 (DE3). The recombinant GT protein was purified and demonstrated to transform Rh2 into two novel ginsenosides, and they were characterized by nuclear magnetic resonance (NMR) techniques and evaluated by 3-(4, 5-dimethylthiazol-2-yl)-2-5-diphenyltetrazolium bromide assay. Results: Two novel ginsenosides with an additional glucopyranosyl (6→1) and two additional glucopyranosyl (6→1) linked with the C-3 position of the substrate Rh2 were synthesized, respectively. Cell viability assay in the lung cancer (A549) cell line showed that glucosyl ginsenoside Rh2 inhibited cell viability more potently than ginsenoside Rg3 and Rh2 at a concentration of 10 μM. Furthermore, glucosyl ginsenoside Rh2 did not exhibit any cytotoxic effect in murine macrophage cells (RAW264.7), mouse embryo fibroblasts cells (3T3-L1), and skin cells (B16BL6) at a concentration of 10 μM compared with ginsenoside Rh2 and Rg3. Conclusion: This is the first report on the synthesis of two novel ginsenosides, namely, glucosyl ginsenoside Rh2 and diglucosyl ginsenoside Rh2 from Rh2 by using recombinant GT isolated from L. rhamnosus. Moreover, diglucosyl ginsenoside Rh2 might be a new candidate for treatment of inflammation, obesity, and skin whiting, and especially for anticancer.

Output Enhancement of Coaxial Flashlamp Pumped Rhodamine 6G Dye Laser by Energy Transfer (에너지 전환에 의한 동축 섬광관 펌핑 Rhodamine 6G 색소 레이저의 출력 증가)

  • 장우권
    • Korean Journal of Optics and Photonics
    • /
    • v.4 no.2
    • /
    • pp.195-199
    • /
    • 1993
  • The output energy of Rh-6G dye laser was enhanced by the energy transfer in the mixture of Rh-6G and C-545. The laser was pumped by coaxial flashlamp filled argon gas. The optimum concentration of Rh-6G was $10_-4mol/l$ without mixing. The output energy was enhanced about 70 % at 0.4 % C-545 mixture with respect to the concentration of Rh-6G. The peak output power and the output energy were 27 kW and 50 mJ at the pumping energy of 346 J.

  • PDF

Production of the Rare Ginsenoside Rh2-MIX (20(S)-Rh2, 20(R)-Rh2, Rk2, and Rh3) by Enzymatic Conversion Combined with Acid Treatment and Evaluation of Its Anti-Cancer Activity

  • Song, Bong-Kyu;Kim, Kyeng Min;Choi, Kang-Duk;Im, Wan-Taek
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.7
    • /
    • pp.1233-1241
    • /
    • 2017
  • The ginsenoside Rh2 has strong anti-cancer, anti-inflammatory, and anti-diabetic effects. However, the application of ginsenoside Rh2 is restricted because of the small amounts found in Korean white and red ginsengs. To enhance the production of ginsenoside Rh2-MIX (comprising 20(S)-Rh2, 20(R)-Rh2, Rk2, and Rh3 as a 10-g unit) with high specificity, yield, and purity, a new combination of enzymatic conversion using the commercial enzyme Viscozyme L followed by acid treatment was developed. Viscozyme L treatment at pH 5.0 and $50^{\circ}C$ was used initially to transform the major ginsenosides Rb1, Rb2, Rc, and Rd into ginsenoside F2, followed by acid-heat treatment using citric acid 2% (w/v) at pH 2.0 and $121^{\circ}C$ for 15 min. Scale-up production in a 10-L jar fermenter, using 60 g of the protopanaxadiol-type ginsenoside mixture from ginseng roots, produced 24 g of ginsenoside Rh2-MIX. Using 2 g of Rh2-MIX, 131 mg of 20(S)-Rh2, 58 mg of 20(R)-Rh2, 47 mg of Rk2, and 26 mg of Rh3 were obtained at over 98% chromatographic purity. Then, the anti-cancer effect of the four purified ginsenosides was investigated on B16F10, MDA-MB-231, and HuH-7 cell lines. As a result, these four rare ginsenosides markedly inhibited the growth of the cancer cell lines. These results suggested that rare ginsenoside Rh2-MIX could be exploited to prepare an anti-cancer supplement in the functional food and pharmaceutical industries.

Ginsenoside Rh2 inhibits proliferation of human promyelocytic HL-60 leukemia cells via $G_0/G_1$ phase arrest and induction of differentiation

  • Cho, Seoung-Hee;Kim, Dong-Hyun;Lee, Kyung-Tae
    • Proceedings of the Ginseng society Conference
    • /
    • 2006.05a
    • /
    • pp.3-12
    • /
    • 2006
  • 1 The present work was performed to investigate the effects of ginsenoside Rh2 on proliferation, cell cycle-regulation and differentiation of human leukemia HL-60 cells as well as the underlying mechanisms for these effects. 2 Ginsenoside Rh2 potently inhibited the proliferation of HL-60 cells in both a dose- and time-dependent manner with an $IC_{50}$, $20{\mu}M$. 3 DNA flow-cytometry indicated that ginsenoside Rh2 markedly induced a $G_1$ phase arrest of HL-60 cells. 4 Among the $G_1$ phase cell cycle-related proteins, the levels of cyclin-dependent kinase(CDK)4, 6 and cyclin D1, cyclin D2, cyclin D3 were reduced by ginsenoside Rh2, whereas the steadystate levels of CDK2 and cyclin E were unaffected. 5 The protein levels of a CDK inhibitor p16, $p21^{CIP1/WAF1}$ and $p27^{KIP1}$ were markedly increased by ginsenoside Rh2. 6 Ginsenoside Rh2 markedly enhanced the binding of $p21^{CIP1/WAF1}$ and $p27^{KIP1}$ with CDK2 and CDK6, resulting in the reduced activity of both kinases and the hypophosphorylation of Rb protein. 7 We furthermore suggest that ginsenoside Rh2 is a potent inducer of the differentiation of HL-60 cells, based on observations such as a reduction of the nitroblue tetrazolium level, an increase in the esterase activities and phagocytic activity, morphology changes, and the expression of CD11b, CD14, CD64 and CD66b surface antigens. 8 In conclusion, the onset of ginsenoside Rh2-induced the $G_0/G_1$ arrest of HL-60 cells prior to the differentiation is linked to a sharp up-regulation of the $p21^{CIP1/WAF1}$ level and a decrease in the CDK2, CDK4 and CDK6 activities. This is the first report demonstrating that ginsenoside Rh2 potently inhibits the proliferation of human promyelocytic HL-60 cells via the $G_1$ phase cell cycle arrest and differentiation induction.

  • PDF

Macrophage Migration Inhibitory Factor (MIF) Induced Stromal Cell-derived Factor 1 (SDF-l) Production Via Nuclear Factor KappaB (NF-${\kappa}B$) Signaling in Rheumatoid Arthritis Fibroblast Like Synoviocytes (RA-FLS) (류마티스관절염 활막세포에서 NF-${\kappa}B$ 신호전달을 통한 MIF의 SDF-1 생성 유도)

  • Cho, Mi-La;Park, Mi-Kyung;Kim, Kyoung-Woon;Oh, Hye-Jwa;Lee, Seon-Yeong;Park, Jin-Sil;Heo, Yu-Jung;Ju, Ji-Hyeon;Min, Jun-Ki;Lee, Sang-Heon;Park, Sung-Hwan;Kim, Ho-Youn
    • IMMUNE NETWORK
    • /
    • v.7 no.1
    • /
    • pp.39-47
    • /
    • 2007
  • Background: Stromal cell-derived factor (SDF)-1 is a potent chemoattractant for activated T cells into the inflamed Rheumatoid arthritis (RA) synovium. To determine the effect of macrophage migration inhibitory factor (MIF) on the production of SDF-1 in the inflamed RA synovium. Methods: The expression of SDF-1 and MIF in RA and Osteoarthritis (OA) synovium was examined by immunohistochemical staining. The SDF-1 was quantified by RT-PCR and ELISA after RA fibroblast like synoviocyte (FLS) were treated with MIF in the presence and absence of inhibitors of intracellular signal molecules. The synovial fluid (SF) and serum levels of MIF and SDF-1 in RA, OA and healthy control were measured by ELISA. Results: Expression of SDF-1 and MIF in synovium was higher in RA patients than in OA patients. The production of SDF-1 was enhanced in RA FLS by MIF stimulation. Such effect of MIF was blocked by the inhibitors of NF-${\kappa}B$. Concentrations of SDF-1 in the serum and SF were higher in RA patients than in OA patients and healthy control. SDF-1 and MIF was overexpressed in RA FLS, and MIF could up-regulate the production of SDF-1 in RA FLS via NF-${\kappa}B$-mediated pathways. Conclusion: These results suggest that an inhibition of interaction between MIF from T cells and SDF-1 of FLS may provide a new therapeutic approach in the treatment of RA.

Effects of Various Estrus Synchronization and Seasonal Breeding in Hanwoo (한우의 계절번식과 다양한 발정제어 효과에 관한 연구)

  • 이명식;최창용;오운용;조영무;이지웅;김영근;성환후;양화정;손삼규
    • Korean Journal of Animal Reproduction
    • /
    • v.25 no.1
    • /
    • pp.29-33
    • /
    • 2001
  • This study was conducted to investigate the effects of various estrus synchronization and seasonal breeding in Hanwoo. Delivery interval and number of service per conception were 412.9 and 1.76 in the annual breeding and 376.59 and 1.48 in the seasonal breeding, respectively. The percentage of cows exhibiting estrus in PG $F_{2{\alpha}}$, PRID, CIDR and CnRH-PG $F_{2{\alpha}}$-GnRH were 68.1%(141/207), 71.42%(15/20), 56.8%(33/38) and 93.1%(216/232), respectively. A greater percentage of GnRH-PG $F_{ 2{\alpha}}$-GnRH treatment became pregnant(91.1%) than across all treatments(75.0%, 81.0%, 89.6%). The results show that GnRH-PG $F_{2{\alpha}}$-GnRH treatment f3r pregnant in Hanwoo seems to be more effective than the others.

  • PDF

Synthesis, ESR and Electrochemical Characterization of Dioxygen Binding to Dirhodium Complexes with 2-anilinopyridinato Bridging Ligand (2-아닐리노 피리딘을 배위자로 하는 이핵 로듐착물의 두 산소첨가 생성물에 대한 합성 및 전기화학적 성질)

  • Kwang Ha Park;Moo Jin Jun;John. L. Bear
    • Journal of the Korean Chemical Society
    • /
    • v.33 no.6
    • /
    • pp.633-643
    • /
    • 1989
  • The R$Rh_2(ap)_4$(2,2-trans) isomer (ap = 2-anilinopyridinate), which has two anilino nitrogens and two pyridyl nitrogens bound to each rhodium ion trans to their own kind, shows activation towards the one electron reduction of dioxygen at -0.40 V vs SCE. The ESR spectrum taken at 123 K proves the formation of a $[Rh_2(ap)_4(O_2)]$ ion with oxygen axially bound to one rhodium ion and the complex is at a RhⅡ2 oxidation state. The complex will form [$Rh_2(ap)_4(O_2)(CH_3CN)]^-$ in presence of $CH_3CN/CH_2Cl_2$ mixture without breaking the Rh-$O_2^-$ bond. When oxidized at -0.25 and 0.55 V, $[Rh_2(ap)_4(O_2)]$ will undergo two one electron oxidations to form $Rh_2(ap)_4(O_2)[Rh_2(ap)_4(O_2)]^+$. Both species have an axially bound superoxide ion but the former is at $Rh^{II}Rh^{III }$and the later at $Rh^{III}_2$ oxidation states. The ESR spetra and $CH_3CN$ addition study, on the other hand, show that the later complex is better described as $[Rh_{II}Rh^{III}(ap)_4(O_2)]^+$ with the odd electron localized on rhodium ion and the complex has an axially coordinated molecular oxygen. The electrochemical and ESR studies also show that the degree of dioxygen activation is a function of electrochemical redox potential.

  • PDF

Protopanaxatriol Ginsenoside Rh1 Upregulates Phase II Antioxidant Enzyme Gene Expression in Rat Primary Astrocytes: Involvement of MAP Kinases and Nrf2/ARE Signaling

  • Jung, Ji-Sun;Lee, Sang-Yoon;Kim, Dong-Hyun;Kim, Hee-Sun
    • Biomolecules & Therapeutics
    • /
    • v.24 no.1
    • /
    • pp.33-39
    • /
    • 2016
  • Oxidative stress activates several intracellular signaling cascades that may have deleterious effects on neuronal cell survival. Thus, controlling oxidative stress has been suggested as an important strategy for prevention and/or treatment of neurodegenerative diseases. In this study, we found that ginsenoside Rh1 inhibited hydrogen peroxide-induced reactive oxygen species generation and subsequent cell death in rat primary astrocytes. Rh1 increased the expression of phase II antioxidant enzymes, such as heme oxygenase-1 (HO-1), NAD(P)H:quinone oxidoreductase 1, superoxide dismutase-2, and catalase, that are under the control of Nrf2/ARE signaling pathways. Further mechanistic studies showed that Rh1 increased the nuclear translocation and DNA binding of Nrf2 and c-Jun to the antioxidant response element (ARE), and increased the ARE-mediated transcription activities in rat primary astrocytes. Analysis of signaling pathways revealed that MAP kinases are important in HO-1 expression, and act by modulating ARE-mediated transcriptional activity. Therefore, the upregulation of antioxidant enzymes by Rh1 may provide preventive therapeutic potential for various neurodegenerative diseases that are associated with oxidative stress.

Excess of leptin inhibits hypothalamic KiSS-1 expression in pubertal mice

  • Ahn, Sung-Yeon;Yang, Sei-Won;Lee, Hee-Jae;Byun, Jong-Seon;Om, Ji-Yeon;Shin, Choong-Ho
    • Clinical and Experimental Pediatrics
    • /
    • v.55 no.9
    • /
    • pp.337-343
    • /
    • 2012
  • Purpose: Leptin has been considered a link between metabolic state and reproductive activity. Defective reproductive function can occur in leptin-deficient and leptin-excessive conditions. The aim of this study was to examine the effects of centrally injected leptin on the hypothalamic KiSS-1 system in relation to gonadotropin-releasing hormone (GnRH) action in the initial stage of puberty. Methods: Leptin (1 ${\mu}g$) was injected directly into the ventricle of pubertal female mice. The resultant gene expressions of hypothalamic GnRH and KiSS-1 and pituitary LH, 2 and 4 hours after injection, were compared with those of saline-injected control mice. The changes in the gene expressions after blocking the GnRH action were also analyzed. Results: The basal expression levels of KiSS-1, GnRH, and LH were significantly higher in the pubertal mice than in the prepubertal mice. The 1-${\mu}g$ leptin dose significantly decreased the mRNA expression levels of KiSS-1, GnRH, and LH in the pubertal mice. A GnRH antagonist significantly increased the KiSS-1 and GnRH mRNA expression levels, and the additional leptin injection decreased the gene expression levels compared with those in the control group. Conclusion: The excess leptin might have suppressed the central reproductive axis in the pubertal mice by inhibiting the KiSS-1 expression, and this mechanism is independent of the GnRH-LH-estradiol feedback loop.