• Title/Summary/Keyword: Rh(III)

Search Result 65, Processing Time 0.02 seconds

Synthesis, ESR and Electrochemical Characterization of Dioxygen Binding to Dirhodium Complexes with 2-anilinopyridinato Bridging Ligand (2-아닐리노 피리딘을 배위자로 하는 이핵 로듐착물의 두 산소첨가 생성물에 대한 합성 및 전기화학적 성질)

  • Kwang Ha Park;Moo Jin Jun;John. L. Bear
    • Journal of the Korean Chemical Society
    • /
    • v.33 no.6
    • /
    • pp.633-643
    • /
    • 1989
  • The R$Rh_2(ap)_4$(2,2-trans) isomer (ap = 2-anilinopyridinate), which has two anilino nitrogens and two pyridyl nitrogens bound to each rhodium ion trans to their own kind, shows activation towards the one electron reduction of dioxygen at -0.40 V vs SCE. The ESR spectrum taken at 123 K proves the formation of a $[Rh_2(ap)_4(O_2)]$ ion with oxygen axially bound to one rhodium ion and the complex is at a RhⅡ2 oxidation state. The complex will form [$Rh_2(ap)_4(O_2)(CH_3CN)]^-$ in presence of $CH_3CN/CH_2Cl_2$ mixture without breaking the Rh-$O_2^-$ bond. When oxidized at -0.25 and 0.55 V, $[Rh_2(ap)_4(O_2)]$ will undergo two one electron oxidations to form $Rh_2(ap)_4(O_2)[Rh_2(ap)_4(O_2)]^+$. Both species have an axially bound superoxide ion but the former is at $Rh^{II}Rh^{III }$and the later at $Rh^{III}_2$ oxidation states. The ESR spetra and $CH_3CN$ addition study, on the other hand, show that the later complex is better described as $[Rh_{II}Rh^{III}(ap)_4(O_2)]^+$ with the odd electron localized on rhodium ion and the complex has an axially coordinated molecular oxygen. The electrochemical and ESR studies also show that the degree of dioxygen activation is a function of electrochemical redox potential.

  • PDF

Calculation of the Dipole Moments for Transition Metal Complexes by Valence Bond Method (I). Calculation of the Dipole Moments for Octahedral $[M(III)O_3S_3]$ Type Complexes [M(III) = V(III), Cr(III), Mn(III), Fe(III), Co(III), Ru(III), Rh(III) and Os(III)] (원자가 결합법에 의한 전이원소 착물에 대한 쌍극자모멘트의 계산 (제1보). 팔면체 $[M(III)O_3S_3]$ 형태 착물의 쌍극자모멘트의 계산 [M(III) = V(III), Cr(III), Mn(III), Fe(III), Co(III), Ru(III), Rh(III) 및 Os(III)])

  • Sangwoon Ahn;Jeoung Soo Ko
    • Journal of the Korean Chemical Society
    • /
    • v.23 no.4
    • /
    • pp.198-205
    • /
    • 1979
  • A valence bond method of calculation of the dipole moments for octahedral $(M(III)0_3S_3)$ type complexes are developed, using $d^2sp^3 $hybrid orbitals of the central metal ions and the single basis set orbital of ligands. (M (III) =V (III), Cr (III), Mn (III), Fe (III), Co (III), Ru (III), Rh (III) and OS (III)). In this method the mixing coefficient of the valence basis sets for the central metal ion with the appropriate ligand orbitals is not required to be the same, differently from the molecular orbital method. The valence bond method is much more easier to calculate the dipole moments for octahedral complexes than the approximate molecular orbital method and the calculated results are also in the range of the experimental vaues.

  • PDF

Separation of Rh(III) from the Mixed Chloride Solutions Containing Pt(IV) and Pd(II) by Extraction with Alamine336

  • Sun, Panpan;Lee, Myung-Ho;Lee, Man-Seung
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.7
    • /
    • pp.1945-1950
    • /
    • 2010
  • Solvent extraction experiments of Pt(IV), Pd(II) and Rh(III) by Alamine336 were performed from the mixed chloride solutions. In the HCl concentration range from 1 to 5 M, most of Pt and Pd were extracted from the mixed solutions. However, the extraction percentage of Rh was much smaller than that of Pt and Pd. Lower concentration of Alamine336 in strong HCl solution led to higher separation factor of Rh from Pt and Pd. Adding $SnCl_2$ to the mixed solutions increased the extraction percentage of Rh, while the extraction percentage of Pt and Pd was little affected. Our results showed that selective separation of Rh or coextraction of the three platinum group metals from the mixed solution would be possible by adjusting the extraction conditions.

Dioxygen Binding to Dirhodium(Ⅱ, Ⅱ), (Ⅱ, Ⅲ), and (Ⅲ, Ⅲ) Complexes. Spectroscopic Characterization of $[Rh_{2}(ap)_{4}(O_{2})]^{+},\;Rh_{2}(ap)_{4}(O_{2}),\;and\;[Rh_{2}(ap)_{4}(O_{2})]^-$, where ap=2-anilinopyridinate Ion

  • Lee, Jae-Duck;Yao, Chao-Liang;Capdevielle, Francoise J.;Han, Bao-Cheng;Bear, John L.;Kadish, Karl M.
    • Bulletin of the Korean Chemical Society
    • /
    • v.14 no.2
    • /
    • pp.195-200
    • /
    • 1993
  • The neutral, reduced, and oxidized 2,2-trans isomers of $Rh_2(ap)_4$ (ap=2-anilinopyridinate) were investigated with respect to dioxygen binding in $CH_2Cl_2$ containing 0.1 M tetrabutyl-ammonium perchlorate. $Rh_2(ap)_4$ binds dioxygen in nonaqueous media and forms a $Rh^{II}Rh^{III}$ superoxide complex, $Rh_2(ap)_4(O_2)$. This neutral species was isolated and is characterized by UV-visible and IR spectroscopy, mass spectrometry and cyclic voltammetry. It can be reduced by one electron at $E_{1/2}$ = -0.45 V vs. SCE in $CH_2Cl_2$ and gives ${[Rh_2(ap)_4(O_2)]}^-$ as demonstrated by the ESR spectrum of a frozen solution taken after controlled potential reduction. The superoxide ion in ${[Rh_2(ap)_4(O_2)]}^-$ is axially bound to one of the two rhodium ions, both of which are in a +2 oxidation state. $Rh_2(ap)_4(O_2)$ can also be stepwise oxidized in two one-electron transfer steps at $E_{1/2}$ = 0.21 V and 0.85 V vs. SCE in $CH_2Cl_2$ and gives ${[Rh_2(ap)_4(O_2)]}^+$ followed by ${[Rh_2(ap)_4(O_2)]}^{2+}$. ESR spectra demonstrate that the singly oxidized complex is best described as ${[Rh^{II}Rh^{III}(ap)_4(O_2)]}^+$ where the odd electron is delocalized on both of the two rhodium ions and the axial ligand is molecular oxygen.

Extraction behaviors of platinum group metals in simulated high-level liquid waste by a hydrophobic ionic liquid bearing an amino moiety

  • Wu, Hao;Kim, Seong-Yun;Takahashi, Tadayuki;Oosugi, Haruka;Ito, Tatsuya;Kanie, Kiyoshi
    • Nuclear Engineering and Technology
    • /
    • v.53 no.4
    • /
    • pp.1218-1223
    • /
    • 2021
  • A hydrophobic ionic liquid including an amino moiety ([DiOcAPmim][NTf2]) was synthesized. Its extraction behaviors towards Pd(II), Ru(III), Rh(III) were investigated in nitric acid aqueous solution as a function of contact time, effect of concentration of nitric acid, effect of temperature, and effect of co-existing metal ions. The extraction kinetics of Pd(II) was fairly fast and extraction equilibrium can be attained within only 5 min under the [HNO3] = 2.05 M. When [HNO3]< 1 M, the extraction percentage of Pd(II), Ru(III), Rh(III) were all above 80%. When [HNO3] reached 2 M, all of the extraction percentage decreased and in an order of Pd(II)>Ru(III)>Rh(III). When [HNO3]> 2 M, the extraction performance gradually recovered. The effect of temperature can slightly affect the extraction performance of Pd(II). Furthermore, in simulated high-level liquid waste, [DiOcAPmim][NTf2] showed a better preference towards Pd(II) under the interference of various other co-existing metal ions.

Ionic Equilibria of Pt(IV), Pd(II) and Rh(III) in Hydrochloric Acid Solution (염산용액(鹽酸溶液)에서 白金(IV), 팔라듐(II)과 로듐(III)의 이온평형(平衡))

  • Lee, Man-Seung;Lee, Jin-Young
    • Resources Recycling
    • /
    • v.18 no.1
    • /
    • pp.30-37
    • /
    • 2009
  • Distribution diagram of Pt(IV), Pd(II), and Rh(III) in HCl solution was obtained as a function of HCl concentration from 0.001 to 10 M by considering complex formation reaction together with mass balance. When HCl concentration was higher than 0.1 M, most of Pt and Pd in HCl solution exist as $PtCl_6^{2-}$ and $PtCl_4^{2-}$. The concentration of HCl had a feat effect on the speciation of Rh(III). As HCl concentration increases from 0.1 to 10 M, the pedominant species changes from $PhCl_5^{2-}$ to $PhCl_6^{3-}$. Interaction parameters of $PtCl_6^{2-}$ and $PdCl_4^{2-}$ with hydrogen ion were evaluated from the solvent extraction data of Pt and Pd reported in the literature.

Rhodium(III)-mediated cycloaddition reactions of alkynes

  • 한원석;이순원
    • Proceedings of the Korea Crystallographic Association Conference
    • /
    • 2002.11a
    • /
    • pp.30-30
    • /
    • 2002
  • Heating [Cp*Rh(η²-NO₃)(OTf) (1) and PhC≡CPh in EtOH for 3 h gave a η⁴-cyclobutadienerhodium complex, [Cp*Rh(η⁴-C₄Ph₄)] (2). Complex 1 reacted with HC=CPh in acetone at room temperature for 3 h to give a (η⁴-cyclobutadiene)-rhodium complex, [Cp*Rh(η⁴-C₄HPhC=CPh)] (3). Whereas, the reactions of 1 with HC=CCH₂Cl in acetone at room temperature for 3 h gave the triply halide-bridged dinuclear rhodium complex, [Cp*Rh(μ₂-Cl)₃RhCp*](OTf) (4). Complexes 2-4 have been structurally characterized by X-ray diffraction.

  • PDF

Dichloro and Ethylenediamine Rhodium(III) Complexes of Ethylenediamine-N,N'-di-${\alpha}$-butyric Acid

  • Moo-Jin Jun;Chang-Woo Park;Sung Rack Choi
    • Bulletin of the Korean Chemical Society
    • /
    • v.11 no.3
    • /
    • pp.248-250
    • /
    • 1990
  • Dichloro and ethylenediamine rhodium(III) complexes of a flexible $N_2O_2$-type tetradentate ligand, ethylenediamine-N,N'-di- -butyric acid(eddb), have been prepared. Both s-cis- and uns-cis geometrical isomers have been yielded in the $[Rh(eddb)Cl_2]-\;and\;[Rh(eddb)(en)]^+$ complexes. Ir, pmr, and electronic absorption spectra are used to characterize the complexes obtained in this work.

Reactivity of RhCp* Complexes Containing Labile Ligands toward Potential Linking Ligands Containing Terminal Thiophene or Furan Rings:Preparation and Structures of [Cp*Rh(L1)Cl2], [Cp*Rh(η2-NO3)(L1)](OTf),and {[Rh(L2)] · (OTf)}[L1 = 1,2-Bis((thiophen-2-yl)methylene)hydrazine); L2 = 1,2-Bis((furan-2-yl)methylene)hydrazine]

  • Lee, Kyung-Eun;Lee, Soon-W.
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.12
    • /
    • pp.3600-3604
    • /
    • 2010
  • Rhodium(III)-$Cp^*$ complexes containing labile ligands, $[Cp^*RhCl_2]_2$, [$Cp^*Rh({\eta}^2-NO_3)$(OTf)], and $[Cp^*Rh(OH_2)_3](OTf)_2$, reacted with potential linking ligands [$L^1$ = (2-thiophene)-CH=N-N=CH-(2-thiophene); $L^2$ = (2-furan)-CH=N-N=CH-(2-furan)] to give two molecular compounds, [$Cp^*Rh(L^1)Cl_2$] (1) and [$Cp^*Rh({\eta}^2-NO_3)(L^1)$]$(OTf){\cdot}CH_2Cl_2$ ($2{\cdot}CH_2Cl_2$), and one 1-dimensioanl coordination polymer, $\{[Rh(L^2)]{\cdot}(OTf)}_{\infty}$ (3). Whereas one imine nitrogen atom within the ligand is coordinated to the Rh metal in compounds 1 and 2, both nitrogen atoms are bound to two neighboring Rh metals in compound 3 to lead to a 1-D chain polymer.

Separation of Platinum(IV) and Rhodium(III) from Acidic Chloride Solution by Solvent Extraction with Tri 2-Ethylhexyl Amine(TEHA) (염산용액(鹽酸溶液)에서 Tri 2-Ethylhexyl Amine(TEHA)에 의한 백금과 로듐의 분리(分離))

  • Sun, Pan-Pan;Lee, Man-Seung
    • Resources Recycling
    • /
    • v.22 no.5
    • /
    • pp.29-34
    • /
    • 2013
  • Solvent extraction experiments were performed to separate platinum and rhodium from mixed chloride solution by using tri 2-ethylhexyl amine (TEHA) and its mixture with TBP and LIX 63. Effects of extraction conditions on the separation of the two metals were investigated as a function of extractant concentration in the HCl concentration range from 1 to 9 M. The concentration of Pt (IV) and Rh(III) was controlled to $1{\times}10^{-3}M$ and $2{\times}10^{-4}M$, respectively. In the extraction with TEHA and its mixture, Pt was quantitatively extracted irrespective of HCl concentration, while the extraction percentage of Rh depended on the extraction condition. When the concentration of HCl in the mixed solution was low, the extraction of Rh was nil and separation of Pt and Rh was possible. Adding TBP to TEHA had little effect on the extraction of both metals, while adding LIX63 to TEHA favored the extraction of Rh.