Browse > Article
http://dx.doi.org/10.1016/j.net.2020.09.031

Extraction behaviors of platinum group metals in simulated high-level liquid waste by a hydrophobic ionic liquid bearing an amino moiety  

Wu, Hao (Department of Quantum Science and Energy Engineering, Graduate School of Engineering, Tohoku University)
Kim, Seong-Yun (Department of Quantum Science and Energy Engineering, Graduate School of Engineering, Tohoku University)
Takahashi, Tadayuki (Department of Quantum Science and Energy Engineering, Graduate School of Engineering, Tohoku University)
Oosugi, Haruka (Department of Quantum Science and Energy Engineering, Graduate School of Engineering, Tohoku University)
Ito, Tatsuya (Department of Quantum Science and Energy Engineering, Graduate School of Engineering, Tohoku University)
Kanie, Kiyoshi (Institute of Multidisciplinary Research for Advanced Materials, Tohoku University)
Publication Information
Nuclear Engineering and Technology / v.53, no.4, 2021 , pp. 1218-1223 More about this Journal
Abstract
A hydrophobic ionic liquid including an amino moiety ([DiOcAPmim][NTf2]) was synthesized. Its extraction behaviors towards Pd(II), Ru(III), Rh(III) were investigated in nitric acid aqueous solution as a function of contact time, effect of concentration of nitric acid, effect of temperature, and effect of co-existing metal ions. The extraction kinetics of Pd(II) was fairly fast and extraction equilibrium can be attained within only 5 min under the [HNO3] = 2.05 M. When [HNO3]< 1 M, the extraction percentage of Pd(II), Ru(III), Rh(III) were all above 80%. When [HNO3] reached 2 M, all of the extraction percentage decreased and in an order of Pd(II)>Ru(III)>Rh(III). When [HNO3]> 2 M, the extraction performance gradually recovered. The effect of temperature can slightly affect the extraction performance of Pd(II). Furthermore, in simulated high-level liquid waste, [DiOcAPmim][NTf2] showed a better preference towards Pd(II) under the interference of various other co-existing metal ions.
Keywords
Ionic liquid; Platinum group metals; Simulated high-level liquid waste;
Citations & Related Records
연도 인용수 순위
  • Reference
1 M. Rzelewska-Piekut, M. Regel-Rosocka, Separation of Pt(IV), Pd(II), Ru(III) and Rh(III) from model chloride solutions by liquid-liquid extraction with phosphonium ionic liquids, Separ. Purif. Technol. 212 (2019) 791-801, https://doi.org/10.1016/j.seppur.2018.11.091.   DOI
2 F.H. Li, Y. Shang, Z.M. Ding, H.Q. Weng, J.X. Xiao, M.Z. Lin, Efficient extraction and separation of palladium (Pd) and ruthenium (Ru) from simulated HLLW by photoreduction, Separ. Purif. Technol. 182 (2017) 9-18, https://doi.org/10.1016/j.seppur.2017.03.029.   DOI
3 D. parajuli, K. hirota, N. Seko, Effective separation of palladium from simulated high level radioactive waste, J. Radioanal. Nucl. Chem. 288 (2011) 53-58, https://doi.org/10.1007/s10967-010-0870-4.   DOI
4 R. Ruhela, J.N. Sharma, B.S. Tomar, V.C. Adya, T.K. Sheshgiri, R.C. Hubli, A.K. Suri, N,N,N',N'-Tetra(2-Ethylhexyl) thiodiglycolamide T(2EH)TDGA: a promising ligand for separation and recovery of palladium from high level liquid waste (HLLW) solutions, Separ. Sci. Technol. 46 (2011) 965-971, https://doi.org/10.1080/01496395.2010.539191.   DOI
5 A. Patel, R. Dawson, Recovery of platinum group metal value via potassium iodide leaching, Hydrometallurgy 157 (2015) 219-225, https://doi.org/10.1016/j.hydromet.2015.08.008.   DOI
6 S. Ma, K. Funaki, A. Miyazaki, A. Muramatsu, K. Kanie, Ionic liquids with amino moieties: selective and reversible extraction/back-extraction for platinum group metal ions from aqueous solutions, Chem. Lett. 46 (2017) 1422-1425, https://doi.org/10.1246/cl.170599.   DOI
7 R. Ruhela, B.S. Tomar, J.N. Sharma, T.K. Seshagiri, V.C. Adya, R.C. Hubli, A.K. Suri, Studies on the separation and recovery of palladium from simulated high level liquid waste (SHLW) solution with novel extractant N,N,N',N'-tetra (2-ethylhexyl) dithiodiglycolamide DTDGA, Separ. Sci. Technol. 48 (2013) 1049-1055, https://doi.org/10.1080/01496395.2012.724140.   DOI
8 M.L. Dietz, J.A. Deielawa, Ion-exchange as a mode of cation transfer into room-temperature ionic liquids containing crown ethers: implications for the 'greenness' of ionic liquids as diluents in liquideliquid extraction, Chem. Commun. (2001) 2124-2125, https://doi.org/10.1039/B104349H.   DOI
9 M.D. Hall, T.W. Failes, D.E. Hibbs, T.W. Hambley, Structural investigations of palladium (II) and platinum (II) complexes of salicylhydroxamic acid, Inorg. Chem. 41 (2002) 1223-1228, https://doi.org/10.1021/ic010760q.   DOI
10 M.D. Ogden, S.I. Sinkov, M. Nilson, G.J. Lumetta, R.D. Hancock, K.L. Nash, Complexation of Am (III) and Nd (III) by 1, 10-phenanthroline-2, 9-dicarboxylic acid 42 (2013) 211-225, https://doi.org/10.1007/s10953-012-9940-2.   DOI
11 M.M. Raj, A. Dharmaraja, K. Panchanatheswaran, K.A. Venkatesan, T.G. Srinivasan, P.R.V. Rao, Extraction of fission palladium(II) from nitric acid by benzoylmethylenetriphenylphosphorane (BMTPP), Hydrometallurgy 84 (2006) 118-124, https://doi.org/10.1016/J.HYDROMET.2006.05.003.   DOI
12 S. Genand-Pinaz, N. Papaiconomou, J.M. Leveque, Removal of platinum from water by precipitation or liquideliquid extraction and separation from gold using ionic liquids, Green Chem. 15 (2013) 2493-2501, https://doi.org/10.1039/C3GC40557E.   DOI
13 S. Ikeda, T. Mori, Y. Ikeda, K. Takao, Microwave-assisted solvent extraction of inert platinum group metals from HNO3(aq) to betainium-based thermomorphic ionic liquid, ACS Sustain. Chem. Eng. 4 (2016) 2459-2463, https://doi.org/10.1021/acssuschemeng.6b00186.   DOI
14 M.J. Earle, K.R. Seddon, Ionic liquids. Green solvents for the future, Pure Appl. Chem. 72 (2000) 1391-1398, https://doi.org/10.1351/pac200072071391.   DOI
15 E.Bosse, L. Berthon, N. Zorz, J. Monget, C. Berthon, I. Bisel, S. Legand, P. Moisy, Stability of [MeBu3N][Tf2N] under gamma irradiation, Dalton Trans. (2008) 924-931, https://doi.org/10.1039/B713661G.   DOI
16 A. Eguchi, K. Morita, N. Hirayama, Distribution equilibria of amphoteric 8-quinolinol between 1-Alkyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide and aqueous phases and their effect on ionic liquid chelate extraction behavior of iron(III), Anal. Sci. 33 (2017) 1447-1451, https://doi.org/10.2116/analsci.33.1447.   DOI
17 V.M. Telmore, P. Kumar, P.G. Jaison, Study on complexation of palladium with thiourea-based ligands and its determination in simulated high-level liquid waste using solid phase extraction-electrospray mass spectrometry, J. Radioanal. Nucl. Chem. 318 (2018) 1249-1259, https://doi.org/10.1007/s10967-018-6165-x.   DOI
18 S. Kono, H. Kazama, T. Mori, T. Arai, K. Takao, Significant acceleration of PGMs extraction with UCST-type thermomorphic ionic liquid at elevated temperature, ACS Sustain. Chem. Eng. 6 (2018) 1555-1559, https://doi.org/10.1021/acssuschemeng.7b04447.   DOI
19 K. Sasaki, K. Takao, T. Suzuki, T. Mori, T. Araia, Y. Ikeda, Extraction of Pd(II), Rh(III) and Ru(III) from HNO3 aqueous solution to betainium bis-(trifluoromethanesulfonyl)imide ionic liquid, Dalton Trans. 43 (2014) 5648-5651, https://doi.org/10.1039/C4DT00091A.   DOI
20 S.Y. Ning, S.C. Zhang, W. Zhang, J. Zhou, S.Y. Wang, X.P. Wang, Y.Z. Wei, Separation and recovery of Rh, Ru and Pd from nitrate solution with a silicabased IsoBu-BTP/SiO2-P adsorbent, Hydrometallurgy 191 (2020) 105207, https://doi.org/10.1016/j.hydromet.2019.105207.   DOI
21 A. Messadi, A. Mohamadou, S. Boudesocque, L. Dupont, E. Guillon, Task-specific ionic liquid with coordinating anion for heavy metal ion extraction: cation exchange versus ion-pair extraction, Separ. Purif. Technol. 107 (2013) 172-178, https://doi.org/10.1080/01496395.2014.952747.   DOI
22 K.R. Kim, M.S. Lee, D.H. Ahn, S.P. Yim, H. Chung, Preparation of functional anion-exchange resin and its selective adsorption of palladium in nitric acid medium, J. Ind. Eng. Chem. 8 (2002) 472-476.
23 P. Giridhar, K.A. Venkatesan, T.G. Srinivasan, P.R. Vasudeva Rao, Extraction of uranium(VI) from nitric acid medium by 1.1M tri-n-butylphosphate in ionic liquid diluent, J. Radioanal. Nucl. Chem. 265 (2005) 31-38, https://doi.org/10.1007/s10967-005-0785-7.   DOI
24 Z. Shultz, J.C. Gaitor, R.D. Burton, M. Regner, Y.H. Sheng, A. Mirjafari, Phosphorodithioate-functionalized ionic liquids: synthesis and physicochemical properties characterization, J. Mol. Liq. 276 (2019) 334-337, https://doi.org/10.1016/j.molliq.2018.11.166.   DOI
25 L.Y. Yuan, J. Peng, L. Xu, M.L. Zhai, J.Q. Li, G.S. Wei, Radiation effects on hydrophobic ionic liquid [C4mim][NTf2] during extraction of strontium ions, J. Phys. Chem. B 113 (2009) 8948-8952, https://doi.org/10.1021/jp9016079.   DOI
26 R.P. Bush, Recovery of platinum group metals from high level radioactive waste, Platin. Met. Rev. 35 (1991) 202-208. https://www.technology.matthey.com/article/35/4/202-208/.
27 H. Jena, S. Raghavan, V. Pogaku, P.R. Bandi, G.K.K. Vadakkapet, Removal of Ru from simulated high-level waste prior to the final vitrification into borosilicate glass using tin as the alloying element: feasibility study, J. Hazard. Toxic Radioact. Waste 22 (2018), 04018018, https://doi.org/10.1061/(ASCE)HZ.2153-5515.0000408.   DOI
28 T. Ito, S.Y. Kim, Study on separation of platinum group metals from high-level liquid waste using sulfur-containing amic acid-functionalized silica, J. Ion Exch. 29 (2018) 97-103, https://doi.org/10.5182/jaie.29.97.   DOI
29 A. Cieszynska, M. Wisniewski, Extraction of palladium(II) from chloride solutions with Cyphos®IL 101/toluene mixtures as novel extractant, Separ. Purif. Technol. 73 (2010) 202-207, https://doi.org/10.1016/j.seppur.2010.04.001.   DOI
30 P.K. Mohapatra, P. Kandwal, M. Iqbal, J. Huskens, M.S. Muralia, W. Verboomb, A novel CMPO-functionalized task specific ionic liquid: synthesis, extraction and spectroscopic investigations of actinide and lanthanide complexes, Dalton Trans. 42 (2013) 4343-4347, https://doi.org/10.1039/C3DT32967D.   DOI
31 Y.L. Xu, S.Y. Kim, T. Ito, H. Tokuda, K. Hitomi, K. Ishii, Chromatographic separation of platinum group metals from simulated high level liquid waste using microporous silica-based adsorbents, J. Chromatogr. A 1312 (2013) 37-41, https://doi.org/10.1016/j.chroma.2013.08.089.   DOI
32 N. Iyer, R. Ruhela, A. Das, M. Yadav, A.K. Singh, J.K. Chakravartty, Novel imino diacetamide grafted styrene divinyl benzene resin for separation and recovery of palladium from simulated high level liquid waste, Separ. Sci. Technol. 51 (2016) 1971-1978, https://doi.org/10.1080/01496395.2016.1199570.   DOI
33 H. Wu, X.X. Zhang, X.B. Yin, Y. Inaba, M. Harigai, K. Takeshita, Selective separation of cadmium (II) from zinc (II) by a novel hydrophobic ionic liquid including N,N,N',N'-tetrakis(2-methylpyridyl)-1,2-phenylenediamine-4-amido structure: a hard-soft donor combined method, Dalton Trans. 47 (2018) 10063-10070, https://doi.org/10.1039/C8DT02228C.   DOI
34 Z.W. Zheng, T. Arai, K. Takao, Kinetic and thermodynamic requirements to extend solvent compatibility in thermal-assisted extraction of inert platinum group metals, ACS Sustain. Chem. Eng. 7 (2019) 9750-9753, https://doi.org/10.1021/acssuschemeng.9b01622.   DOI