• Title/Summary/Keyword: Rg2

Search Result 871, Processing Time 0.048 seconds

Anti-breast cancer activity of Fine Black ginseng (Panax ginseng Meyer) and ginsenoside Rg5

  • Kim, Shin-Jung;Kim, An Keun
    • Journal of Ginseng Research
    • /
    • v.39 no.2
    • /
    • pp.125-134
    • /
    • 2015
  • Background: Black ginseng (Ginseng Radix nigra, BG) refers to the ginseng steamed for nine times and fine roots (hairy roots) of that is called fine black ginseng (FBG). It is known that the content of saponin of FBG is higher than that of BG. Therefore, in this study, we examined antitumor effects against MCF-7 breast cancer cells to target the FBG extract and its main component, ginsenoside Rg5 (Rg5). Methods: Action mechanism was determined by MTT assay, cell cycle assay and western blot analysis. Results: The results from MTT assay showed that MCF-7 cell proliferation was inhibited by Rg5 treatment for 24, 48 and 72 h in a dose-dependent manner. Rg5 at different concentrations (0, 25, 50 and $100{\mu}M$), induced cell cycle arrest in G0/G1 phase through regulation of cell cycle-related proteins in MCF-7 cells. As shown in the results from western blot analysis, Rg5 increased expression of p53, $p21^{WAF1/CIP1}$ and $p15^{INK4B}$ and decreased expression of Cyclin D1, Cyclin E2 and CDK4. Expression of apoptosiserelated proteins including Bax, PARP and Cytochrome c was also regulated by Rg5. These results indicate that Rg5 stimulated cell apoptosis and cell cycle arrest at G0/G1 phase via regulation of cell cycle-associated proteins in MCF-7 cells. Conclusion: Rg5 promotes breast cancer cell apoptosis in a multi-path manner with higher potency compared to 20(S)-ginsenoside Rg3 (Rg3) in MCF-7 (HER2/ER+) and MDA-MB-453 (HER2+/ER) human breast cancer cell lines, and this suggests that Rg5 might be an effective natural new material in improving breast cancer.

Cancer Chemopreventive Compounds of Red Ginseng Produced from panax ginseng C.A. Meyer (고려인삼으로 제조된 홍삼중의 화학적 암 예방성분)

  • Yun, Taik-Koo;Lee, Yun-Sil;Lee, You-Hui;Yun, Hyo-Yung
    • Journal of Ginseng Research
    • /
    • v.25 no.3
    • /
    • pp.107-111
    • /
    • 2001
  • Fresh Panax gineng C.A. cultivated in Korea(Korean red ginseng) was found to be ineffective as anticarcinogenic or cancer preventive in experimental animal model or in human case-control and cohort study. However, when treated with heat, the fresh ginseng, white ginseng were highly effective cancer preventives. Four compounds including 20(S)-ginsenoside Rh$_1$(Rh$_1$), 20(S)-ginsenoside Rh$_2$(Rh$_2$), 20(S)0-siwenoside Rg$_3$(Rg$_3$) and sinsenoside Rg$\sub$5/ were consequently purified from Korean red ginseng, and they were tested by Yun\`s 9 week medium-term anticarcinogenicity test model. Rg$_3$ and Rg$\sub$5/ statistically significantlydecreased the incidence of benzo(a)pyrene-induced mouse lung tumor, Rh$_2$showed tendency of decrease, and Rh1 showed no effect. It is, therefore, concluded that Rg$_3$ and Rg$\sub$5/ are active anticarcinogenic components in res ginseng and they either singularly or synergistically act in the prevention of cancer.

  • PDF

Antihyperlipidemic Effect of Ginsenoside Rg1 in Type 2 Diabetic Mice (제2형 당뇨병 모델 마우스에서 ginsenoside Rg1의 항당뇨 효과)

  • Park, Jae-Hong;Lee, Ji-Youn;Yeo, Ji-Young;Nam, Jeong-Su;Jung, Myeong-Ho
    • Journal of Life Science
    • /
    • v.21 no.7
    • /
    • pp.932-938
    • /
    • 2011
  • Ginsenoside Rg1 is a pharmacologically active component isolated from ginseng. The goal of this study was to clarify the beneficial effects of Rg1 on glucose and lipid metabolism in diabetic animals (db/db mice). To accomplish this, ten week old db/db mice were administered 10 mg/kg of Rg1 for 15 days. Rg1 did not influence the weight of db/db mice when compared with vehicle-treated db/db mice. The administration of Rg1 lowered fasting plasma glucose, and improved glucose tolerance. Importantly, Rg1 markedly reduced both plasma triglyceride and free fatty acids, and increased high-density lipoprotein cholesterol (HDL-C) concentrations in db/db mice. Rg1 activated promoter activity of chimeric GAL4-PPAR${\alpha}$ reporter and increased expression of peroxisome proliferator-activated receptor alpha (PPAR${\alpha}$) target genes such as carnitine palmitoyltransferase-1 (CPT-1) and acyl-CoA oxidase (ACO), which are involved in fatty acid oxidation. These findings indicated that improvement of lipid profiles by Rg1 may be associated with increased fatty acid oxidation via PPAR${\alpha}$ activation. Taken together, these results suggest that Rg1 could have beneficial effects for controlling hyperglycemia and hyperlipidemia associated with type 2 diabetes.

Biosurfactant Production by Marine Actinomycetes Isolates Streptomyces althioticus RG3 and Streptomyces californicus RG8 as Promising Sources of Antimicrobial and Antifouling Effects

  • Hamed, Moaz M.;Abdrabo, Mohamed A.A.;Youssif, Asmaa M.
    • Microbiology and Biotechnology Letters
    • /
    • v.49 no.3
    • /
    • pp.356-366
    • /
    • 2021
  • Two marine actinobacterial isolates, RG3 and RG8, were identified using 16Sr DNA as Streptomyces althioticus RG3 and Streptomyces californicus RG8 and submitted to the database of genetic information with accession numbers MW661230 and MW661234, respectively; they were found to have emulsification indexes of 60 ± 2.5% and 53 ± 2.2%, respectively. The biosurfactants obtained were stable at a temperature of 35℃ for both strains; they were stable at 10% NaCl, in the case of S. althioticus RG3 and at 10-15% NaCl in the case of Str.californicus RG8; both strains produced the most biosurfactant when exposed to alkaline conditions. We characterized the biosurfactants, including features such as their chemical composition, using Fourier transform infrared spectroscopy analysis. The antimicrobial activity of the biosurfactant extracts was evaluated using the well diffusion method against Vibrio alginolyticus MK170250, Escherichia coli ATCC 8739, Pseudomonas aeruginosa ATCC 4027, and Staphylococcus aureus ATCC 25923. S. althioticus RG3 biosurfactants were found to have better antimicrobial activity than those of Str. californicus RG8, indicating that they may be used in pharmaceutical industries and in the manufacture of antifouling products.

Cancer Chemopreventive Effects of Ginsenoside $Rg_3,\;Rg_5,\;Rh_2$ and BST from Enzymatically Fermented Korean Ginseng Extract

  • Yun Taik-Koo
    • Proceedings of the Ginseng society Conference
    • /
    • 2002.10a
    • /
    • pp.35-46
    • /
    • 2002
  • Panax ginseng C. A. Meyer has been one of the most highly recognized medicinal herbs in the Orient. Previous experiments have demonstrated that $Rg_3,\;and\;Rg_5$ statistically significantly decreased the incidence of benzo(a)pyrene-induced mouse lung tumor, $Rh_2$ showed tendency of decrease and $Rh_1$ showed no effect. It was, therefore, concluded that $Rg_3,\;Rg_5\;and\;Rh_2$ are active cancer chemopreventive components in red ginseng and they either singularly or synergistically act in the prevention of cancer. This study was undertaken to compare the cancer chemopreventive effects of $Rg_3,\;Rg_5\;and\;Rh_2$(purity: more than $60\%$) isolated from fermented ginseng extract and BST fermented ginseng with fortified ginsenoside $Rg_3\;and\;Rh_2$. The cancer chemopreventive effects were investigated in experimental groups treated with benzo(a)pyrene(BP) with ginsenoside $Rg_3,\;Rg_5\;Rh_2\;or\;BST$ at three doses of $50^{\circ}C/ml,\;100^{\circ}C/ml\;and\;200^{\circ}C/ml$ When mice given with $50^{\circ}C/ml$ concentration of ginsenoside $Rg_3$ combined with BP for 6 weeks after BP administration, $Rg_3\;showed\;60\%$ of lung tumor incidence, where as $100^{\circ}C/ml\;and\;200^{\circ}C/ml\;of\;Rg_3$ combined with BP groups had significant decrease of incidence $(40.0\%)$ respectively, with the inhibition rate being $35.5\%.$ While the tumor incidence was not decreased in the group treated with BP and 50 of $Rg_5,$ the incidence was $34.0\%\;and\;32.0\%$ in the group treated with BP and 100 and 200 of $Rg_5$, respectively. These incidences were significantly less than the group treated with BP alone, with the inhibition rate being $45.2\%\;and\;48.4\%,$ respectively. On the other hand, in the group treated with BP and 50 of ginsenoside $Rh_2,$ the tumor incidence was not decreased. However, the incidence was $40.0\%\;and\;38.8\%$ in the experimental treated with BP and 100 and 200 of $Rh_2,$ respectively, with the inhibition rate being $45.2\%\;and\;48.4\%,$ respectively. In addition, the incidence showed the tendency to decrease in the experimental group treated with BP and 50 of BST which contained $16.2\%\;of\;Rh_2,\;15.4\%\;of\;Rg_3\;and\;2.5%\;of\;Rg_5.$ The tumor incidence was $54.0\%$ in this group. In the group treated with 100 and 200 of EST, the incidence was $34.0\%\;and\;30.0\%,$ respectively, the incidences significantly being lower than the group treated with BP alone, with the inhibiting rate being $45.2\%\;and\;51.6\%,$ respectively. The results of this study strongly suggested that ginsenoside $Rg_3,\;Rg_5\;and\;Rh_2$ are the active components of red ginseng having a cancer chemopreventive activity and $Rg_5$ is the strongest cancer chempopreventive among them. On the other hand, the results demonstrating that the incidence of lung tumor was more markedly reduced by BST fermented ginseng with fortified ginsenoside $Rh_2\;or\;Rg_3$ compared to the single component alone, suggest that the combination of these components may remarkablely improve the cancer preventive effect

  • PDF

Effects of red glasswort as sodium chloride substitute on the physicochemical properties of pork loin ham

  • Jeong, Tae-Jun;Kim, Tae-Kyung;Kim, Hyun-Wook;Choi, Yun-Sang
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.4
    • /
    • pp.662-669
    • /
    • 2020
  • Objective: This study was conducted to evaluate the effect of red glasswort (RG) (Salicornia herbacea L.) curing on the physicochemical, textural and sensory properties of cooked pork loin ham (M. longissimus thoracis et lumborum). Methods: All treatments were cured with different salt and RG powder levels. RG0 treatment was prepared with only 4% NaCl (w/w) as a control, and RG25, 3% NaCl:1% RG (w/w); RG50, 2% NaCl:2% RG (w/w); RG75, 1% NaCl:3% RG (w/w); RG100, 0% NaCl:4% RG (w/w) treatments were prepared sequentially. All samples were individually vacuum packaged in polyethylene bags and stored for 7 d at 3℃±1℃. Results: The results showed that as the rate of RG substitution increased, pH value, redness, myofibrillar protein solubility, and myofibrillar fragmentation index increased (p<0.05), but salt concentration and shear force decreased (p<0.05). However, there were no significant differences in cooking loss and moisture content. In terms of sensory evaluation, RG100 exhibited higher scores in tenderness and juiciness than RG0 (p<0.05). Conclusion: The partial substitution of NaCl by RG could improve the physicochemical properties, textural and sensory characteristics of cooked pork loin. Therefore, it is suggested that RG as a natural salt replacer could be an effective ingredient for developing low-sodium cured hams.

Changes of Ginsenosides and Physiochemical Properties in Ginseng by New 9 Repetitive Steaming and Drying Process (새로운 자동 구증구포방법에 의한 인삼사포닌의 변환 및 이화학적 특성)

  • Jin, Yan;Kim, Yeon-Ju;Jeon, Ji-Na;Wang, Chao;Min, Jin-Woo;Jung, Sun-Young;Yang, Deok-Chun
    • Korean Journal of Plant Resources
    • /
    • v.25 no.4
    • /
    • pp.473-481
    • /
    • 2012
  • This study was conducted to investigate the contents of ginsenosides and physiochemical properties of Panax ginseng after 9 times steaming and drying treatment by using the new auto steamer which is more fast and simple than previous report. In the process of steaming and drying, the content of six major ginsenosides such as Rg1, Re, Rb1, Rc, Rb2 and Rd were gradually decreased. On the other hand, the content of seven minor ginsenosides includes Rh1, 20(S)-Rg2, 20(R)-Rg2, 20(S)-Rg3, 20(R)-Rg3, Rk1 and Rg5 were gradually increased. We observed the protopanxadiol ginsenosides such as Rb1, Rb2, Rc and Rd were converted into 20(S)-Rg3, 20(R)-Rg3, Rk1 and Rg5; similarly protopanxatriol ginsenosides of Rg1 and Re were converted into Rh1, 20(S)-Rg2 and 20(R)-Rg2. Based on the result of fresh ginseng, the contents of reducing sugar, acidic polysaccharide and total phenolic compounds were gradually increased and reached to maximum at 7 times repetitive steaming process of the fresh ginseng. Whereas DPPH radical scavenging activities were gradually decreased to 68% at 7 times steaming. New auto 9 repetitive steaming and drying process has similar production with original methods, but content of benzo(a)pyrene were not almost detected comparatively taking less time. The present results suggested that this method is best for the development of value-added ginseng industry related products.

Ginsenoside Rg2 inhibits osteoclastogenesis by downregulating the NFATc1, c-Fos, and MAPK pathways

  • Sung-Hoon Lee;Shin-Young Park;Jung Ha Kim;Nacksung Kim;Junwon Lee
    • BMB Reports
    • /
    • v.56 no.10
    • /
    • pp.551-556
    • /
    • 2023
  • Ginsenosides, among the most active components of ginseng, exhibit several therapeutic effects against cancer, diabetes, and other metabolic diseases. However, the molecular mechanism underlying the anti-osteoporotic activity of ginsenoside Rg2, a major ginsenoside, has not been clearly elucidated. This study aimed to determine the effects of ginsenoside Rg2 on receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclast formation. Results indicate that ginsenoside Rg2 inhibits RANKL-induced osteoclast differentiation of bone marrow macrophages (BMMs) without cytotoxicity. Pretreatment with ginsenoside Rg2 significantly reduced the RANKL-induced gene expression of c-fos and nuclear factor of activated T-cells (Nfatc1), as well as osteoclast-specific markers tartrate-resistant acid phosphatase (TRAP, Acp5) and osteoclast-associated receptor (Oscar). Moreover, RANKL-induced phosphorylation of mitogen-activated protein kinases (MAPKs) was decreased by ginsenoside Rg2 in BMM. Therefore, we suggest that ginsenoside Rg2 suppresses RANKL-induced osteoclast differentiation through the regulation of MAPK signaling-mediated osteoclast markers and could be developed as a therapeutic drug for the prevention and treatment of osteoporosis.

Biotransformation of major ginsenosides in ginsenoside model culture by lactic acid bacteria

  • Park, Seong-Eun;Na, Chang-Su;Yoo, Seon-A;Seo, Seung-Ho;Son, Hong-Seok
    • Journal of Ginseng Research
    • /
    • v.41 no.1
    • /
    • pp.36-42
    • /
    • 2017
  • Background: Some differences have been reported in the biotransformation of ginsenosides, probably due to the types of materials used such as ginseng, enzymes, and microorganisms. Moreover, most microorganisms used for transforming ginsenosides do not meet food-grade standards. We investigated the statistical conversion rate of major ginsenosides in ginsenosides model culture during fermentation by lactic acid bacteria (LAB) to estimate possible pathways. Methods: Ginsenosides standard mix was used as a model culture to facilitate clear identification of the metabolic changes. Changes in eight ginsenosides (Rb1, Rb2, Rc, Rd, Re, Rf, Rg1, and Rg2) during fermentation with six strains of LAB were investigated. Results: In most cases, the residual ginsenoside level decreased by 5.9-36.8% compared with the initial ginsenoside level. Ginsenosides Rb1, Rb2, Rc, and Re continuously decreased during fermentation. By contrast, Rd was maintained or slightly increased after 1 d of fermentation. Rg1 and Rg2 reached their lowest values after 1-2 d of fermentation, and then began to increase gradually. The conversion of Rd, Rg1, and Rg2 into smaller deglycosylated forms was more rapid than that of Rd from Rb1, Rb2, and Rc, as well as that of Rg1 and Rg2 from Re during the first 2 d of fermentation with LAB. Conclusion: Ginsenosides Rb1, Rb2, Rc, and Re continuously decreased, whereas ginsenosides Rd, Rg1, and Rg2 increased after 1-2 d of fermentation. This study may provide new insights into the metabolism of ginsenosides and can clarify the metabolic changes in ginsenosides biotransformed by LAB.

Immunochemical Assay for Korean Ginseng Saponins I Synthesis of Ginsenoside-Protein Conjugate (인삼사포닌의 면역화학적 분석법(I) 인삼사포닌-단백질 결합체의 합성)

  • 한병훈;한용남
    • YAKHAK HOEJI
    • /
    • v.25 no.2
    • /
    • pp.43-47
    • /
    • 1981
  • In an attempt to obtain a saponin antigen, ginsenoside Rg$_{1}$ of Korean ginseng was condensed with bovine serum albumin through a series of modification in the side chain structure of ginsenoside Rg$_{1}$ to prepare a reactive intermediate $Rg_{1}$ azide. The modification of ginsenoside $Rg_{1}$[1] yielded $Rg_{1}$ decacetate [II], mp 252, $Rg_{1}$ acetate-glycol [III], mp 263, $Rg_{1}$ acetate-trisnoraldehyde [IV], mp 231, $Rg_{1}$ acetate-carboxylic acid [V], mp 282, $Rg_{1}$ acetate-methyl ester [VI], mp 271, $Rg_{1}$ hydrazide [VII], mp 220, and finally a reactive intermediate $Rg_{1}$ azide [VIII].

  • PDF