• Title/Summary/Keyword: Rf0sputtering

Search Result 753, Processing Time 0.034 seconds

Phase Formation Behavior and Electrical Conduction Properties of Na0.6WO3 Thin Films Prepared by RF Sputtering Followed by Annealing (RF 스퍼터 증착과 후속 열처리에 의한 Na0.6WO3 박막의 상형성 거동과 전기전도 특성)

  • Lee, Seung-Hyun;Sun, Ho-Jung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.8
    • /
    • pp.510-515
    • /
    • 2014
  • Thin films of cubic $Na_{0.6}WO_3$, which is one of the sodium tungsten bronze, were fabricated by rf sputtering for the electrode applications in integrated sensors and actuators. A single-phase cubic $Na_{0.6}WO_3$ sputtering target of power type was prepared by conventional solid-state reaction. Thin films were deposited from the powder target, and the as-deposited films were amorphous, thus they annealed by tube furnace or RTP for crystallization. Thin films having cubic phase $Na_xWO_3$ were fabricated by the optimization of sputtering and post-annealing conditions, but single-phase cubic $Na_{0.6}WO_3$ thin films were not obtained. Although the films were not in single phase, they had good electrical conduction properties showing electrical resistivities of $10-4{\Omega}{\cdot}cm$ order.

Study on Optical and Electrical Properties of IGZO Thin Film According to RF Power Fabricated by RF Magnetron Sputtering

  • ;Hwang, Chang-Su;Kim, Hong-Bae
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.234-234
    • /
    • 2011
  • IGZO 투명 전도 박막은 TFT-LCD에 사용되는 투명 전도성 산화물 박막으로서 다양한 광전자 소자의 투명 전극으로 널리 사용되고 있다. 본 연구에서는 RF magnetron sputtering법으로 corning 1737 유리기판 위에 RF 파워의 변화에 따라 증착한 IGZO박막의 광학적 전기적 특성 변화를 연구하였다. 박막 증착 조건은 초기 압력 $2.0{\times}10^{-6}$ Torr, 증착 압력 $2.0{\times}10^{-2}$ Torr, 반응가스 Ar 50 sccm, 증착 온도는 실온으로 고정하였으며, 공정변수로 RF 파워를 25 w, 50 w, 75 w, 100 w로 변화시키며, IGZO 타겟은 $In_2O_3$, $Ga_2O_3$, ZnO 분말을 각각 1 : 1 : 2 mol% 조성비로 혼합하여 소결한 타겟을 사용하였다. 표면분석(AFM)결과 RF 파워가 증가함에 따라 거칠기가 증가하였으며, XRD 분석결과 Bragg's 법칙을 만족하는 피크가 나타나지 않는 비정질 구조임을 확인할 수 있었다. 가시광 영역에서 (450 nm~700 nm) 25 w일 때 85% 이상을 확인하였고, RF 파워가 증가할수록 밴드갭이 감소하는 것을 확인하였다. RF 파워가 100 w인 경우 carrier 밀도는 $7.0{\times}10^{19}\;cm^{-3}$, Mobility 13.4 $cm^2$/V-s, Resistivity $6.0{\times}10^{-3}\;{\Omega}-cm$로 투명전도막의 특성을 보였다.

  • PDF

V-I Characteristics of $(Sr_{0.85}Ca_{0.15})TiO_3$ Thin Film by RF Sputtering Method (RF 스퍼터링법에 의한 $(Sr_{0.85}Ca_{0.15})TiO_3$ 박막의 전압-전류 특성)

  • Kim, J.S.;Cho, C.N.;Shin, C.G.;Choi, W.S.;Kim, C.H.;Lee, J.U.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.04b
    • /
    • pp.88-91
    • /
    • 2000
  • The $(Sr_{0.85}Ca_{0.15})TiO_3$(SCT) thin films are deposited on Pt-coated electrode(Pt/TiN/$SiO_2$/Si) using RF sputtering method. The crystallinity of SCT thin films is increased with increase of substrate temperature in the temperature range of 200~500$[^{\circ}C]$. V-I characteristics of SCT thin films show the increasing leakage current with the increases of deposition temperature. The conduction mechanism of the SCT thin films observed in the temperature range of 25~100$[^{\circ}C]$ can be divided into four characteristic regions with different mechanism by the increasing current.

  • PDF

A Study of Thin Film deposition using of RF Magnetron Sputtering (RF 마그네트론 스퍼터링을 이용한 박막 증착에 관한 연구)

  • Lee, Woo Sik
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.11 no.6
    • /
    • pp.772-777
    • /
    • 2018
  • This paper used RF Magnetron Sputtering to deposition n-type and p-type to ITO glass. The N-type ohmic contact worked well under all conditions. Sheet resistance has been shown to increase sheet resistance as RF Power increases. After analyzing the surface of the deposited thin film, in the condition that RF Power was 250W and substrate temperature was $250^{\circ}C$, particles were measured to have a uniform and consistent thin film. P-type has good ohmic contact under all conditions and sheet resistance has been shown to increase as RF Power increases. As the RF Power grew, thickness increased and stabilized. PN junction thin film and NP junction thin film showed increased thickness and stabilized as sputtering time increased. As a result of thin film, conversion efficiency was at 0.2 when sputtering time was 10 minutes.

Microstructure and Electric Properties of Ferroelectric SrBi$_2$Ta$_2$O$_9$ Thin Films Deposited by Modified Rf Magnetron Sputtering Technique (Modified Rf Magnetron Sputtering에 의해 Pt/Ti/SiO$_2$/Si 기판위에 제조된 강유전체 SrBi$_2$Ta$_2$O$_9$ 박막의 미세구조 및 전기적 특성 연구)

  • 양철훈;윤순길
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.5
    • /
    • pp.472-478
    • /
    • 1998
  • Ferroelectric SrBi2Ta2O9(SBT) films were deposited on Pt/Ti/SiO2/Si substrates at 50$0^{\circ}C$ using a sintered SBT target Bi and Ta targets by modified rf magnetron sputtering and then were annealed at 80$0^{\circ}C$ for 10min in oxygen ambinet(760 torr) The composition of the SBT films could be easily controlled using the mul-ti-targets. The film composition of {{{{ {Sr }_{0.8 } {Bi }_{2.9 } {Ta}_{2.0 } {O }_{9 } }} was obtained with SBTd sputtering power of 100 W Bi of 25W and Ta of 10 W. A 250nm thick SBT films exhibited a dense and uniform microstructure and showed the remanent polarization(Pr) of 14.4 $\mu$C/cm2 and the coercive field({{{{ {E }_{c } }})of 60 kV/cm at applied voltage of 5 V. The SBT films show practically no polarization fatigue up to {{{{ {10 }_{10 } }} cycles under 5V bipolar pulse. The retention characteristics of the SBT films looked very promising and the leakage current density of the SBT films was about 1.23$\times${{{{ {10 }^{-7 } }}A/c{{{{ {m }^{2 } }} at 120kV/cm.

  • PDF

Characteristics of working pressure on the ZnO Thin films prepared by RF Magnetron Sputtering System (RF magnetron sputtering 법으로 제조한 ZnO 박막의 증착 압력에 따른 특성)

  • Kim, Jong-Wook;Hwang, Chang-Su;Kim, Hong-Bae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.387-387
    • /
    • 2010
  • 최근 ZnO 박막은 투명 박막, 태양전지, LED 등으로의 응용을 위한 새로운 기능성 박막으로 활발히 연구되어 지고 있다. ZnO 기반의 투명 박막 트랜지스터는 상온에서 증착 가능하여 유리기판을 이용한 광학소자와 플라스틱 기판을 이용한 플럭서블 소자 같은 차세대 전자소자를 구현 할 수 있다. 본 연구에서는 RF Magnetron Sputtering System을 이용하여 coming 1737 유리기판 위에 ZnO 박막을 공정압력에 따라 증착하고, 투명 반도체에 적합한 활용을 위한 구조적, 광학적 분석을 실시하였다. 박막 증착 조건은 초기 압력 $1.0{\times}10^{-6}$Torr, RF 파워는 100W, Ar 유량은 100sccm, 그리고 증착온도는 상온이었다. 증착 압력은 $7.0{\times}10^{-3}$, $2.0{\times}10^{-2}$, $7.0{\times}10^{-2}$Torr로 변화시켰다. 표면 분석 (SEM, AFM) 결과 증착압력이 고진공으로 변화함에 따라 결정립들이 감소하였고 RMS roughness값이 낮아졌다. 그리고 XRD 분석을 통해 피크강도는 증가하고 FWHM은 감소함을 보이고 있는데 이는 결정성이 좋아짐을 나타낸다. 그리고 광학 투과도를 통해 가시광 영역에서의 높은 투과도(85% 이상)을 확인하였고, 고진공으로 변화함에 따라 밴드갭이 넓어지는 것을 확인하였다.

  • PDF

Fatigue Properties of $SrBi_{2}Ta_{2}O_{9}$ Thin Film by RF Sputtering Method (RF Sputtering법에 의한 $SrBi_{2}Ta_{2}O_{9}$ 박막의 피로특성)

  • 오열기;조춘남;정일형;김진사;신철기;최운식;김충혁;이준웅
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.897-900
    • /
    • 2000
  • Annealing dependencies of the fatigue properties of SrBi$_2$Ta$_2$$O_{9}$ thin films were observed as function of substrate temperature(400-50$0^{\circ}C$) by the rf magnetron sputtering method. With increasing annealing temperature from $600^{\circ}C$ to 85$0^{\circ}C$, flourite phase was crystalized to $650^{\circ}C$ and Bi-layered perovskite phase was crystalized above $700^{\circ}C$. The fatigue characteristics of SBT thin films deposited on Pt/TiO$_2$/SiO$_2$/Si substrate did not change up to 101o switching cycles.s.

  • PDF

Effect of RF Superimposed DC Magnetron Sputtering on Electrical and Bending Resistances of ITO Films Deposited on PET at Low Temperature (DC마그네트론 스퍼터링법으로 PET 기판위에 저온 증착한 ITO박막의 비저항과 굽힘 저항성에 대한 RF인가의 영향)

  • Park, Mi-Rang;Lee, Sung-Hun;Kim, Do-Geun;Lee, Gun-Hwan;Song, Pung-Keun
    • Journal of the Korean institute of surface engineering
    • /
    • v.41 no.5
    • /
    • pp.214-219
    • /
    • 2008
  • Indium tin oxide (ITO) films were deposited on PET substrate by RF superimposed DC magnetron sputtering using ITO (doped with 10 wt% $SnO_2$) target. Substrate temperature was maintained below $750^{\circ}C$ without intentionally substrate heating during the deposition. The discharge voltage of DC power supply was decreased from 280 V to 100 V when superimposed RF power was increased from 0 W to 150 W. The electrical properties of the ITO films were improved with increasing of superimposed RF power. In the result of cyclic bending test, relatively high mechanical property was obtained for the ITO film deposited with RF power of 75 W under DC current of 0.75 A which could be attributed to the decrease of internal stress caused by decrease in both deposition rate and plasma impedance.

Effect of RF Power on the Structural, Optical and Electrical Properties of Amorphous InGaZnO Thin Films Prepared by RF Magnetron Sputtering (RF 마그네트론 스퍼터링으로 증착한 비정질 InGaZnO 박막의 구조적, 광학적, 전기적 특성에 미치는 RF 파워의 영향)

  • Shin, Ji-Hoon;Cho, Young-Je;Choi, Duck-Kyun
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.1
    • /
    • pp.38-43
    • /
    • 2009
  • To investigate the effect of RF power on the structural, optical and electrical properties of amorphous InGaZnO (a-IGZO), its thin films and TFTs were prepared by RF magnetron sputtering method with different RF power conditions of 40, 80 and 120 W at room temperature. In this study, as RF power during the deposition process increases, the RMS roughness of a-IGZO films increased from 0.26 nm to 1.09 nm, while the optical band-gap decreased from 3.28 eV to 3.04 eV. In the case of the electrical characteristics of a-IGZO TFTs, the saturation mobility increased from $7.3cm^2/Vs$ to $17.0cm^2/Vs$, but the threshold voltage decreased from 5.9 V to 3.9 V with increasing RF power. It is regarded that the increment of RF power increases the carrier concentration of the a-IGZO semiconductor layer due to the higher generation of oxygen vacancies.

Thickness dependence of the piezoelectric characteristic for PZT films using by rf magnetron sputtering (RF 마그네트론 스퍼터링으로 증착한 두께에 따른 PZT 박막의 강유전 특성에 관한 연구)

  • Lee, Tae-Yong;Park, Young;Song, Joon-Tae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.313-316
    • /
    • 2003
  • The lead zirconate titanate, $Pb(Zr_{0:52}Ti_{0:48})O_3$, films of $0.5\;{\mu}m,\;1\;{\mu}m$ and $2\;{\mu}m$ thickness were fabricated on $Pt/Ti/SiO_2/Si$ substrate by the rf magnetron sputtering method. The PZT films were annealed using by a rapid thermal annealing (RTA) method. The thickness dependence of the film structure, dielectric properties, Polarization-electric field hysteresis loops and capacitance-voltage characteristics were investigated over the thickness range of $0.5\;{\mu}m,\;1\;{\mu}m$ and $2\;{\mu}m$. According to the XRD patterns of the films, (110) peak intensity increases with film thickness increased. The increase of PZT films thickness leads to the decrease of the remanent polarization and the dielectric constant.

  • PDF