• Title/Summary/Keyword: Reynolds numbers

Search Result 642, Processing Time 0.02 seconds

Assessment of RANS Models for 3-D Flow Analysis of SMART

  • Chun Kun Ho;Hwang Young Dong;Yoon Han Young;Kim Hee Chul;Zee Sung Quun
    • Nuclear Engineering and Technology
    • /
    • v.36 no.3
    • /
    • pp.248-262
    • /
    • 2004
  • Turbulence models are separately assessed for a three dimensional thermal-hydraulic analysis of the integral reactor SMART. Seven models (mixing length, k-l, standard $k-{\epsilon},\;k-{\epsilon}-f{\mu},\;k-{\epsilon}-v2$, RRSM, and ERRSM) are investigated for flat plate channel flow, rotating channel flow, and square sectioned U-bend duct flow. The results of these models are compared to the DNS data and experiment data. The results are assessed in terms of many aspects such as economical efficiency, accuracy, theorization, and applicability. The standard $k-{\epsilon}$ model (high Reynolds model), the $k-{\epsilon}-v2$ model, and the ERRSM (low Reynolds models) are selected from the assessment results. The standard $k-{\epsilon}$ model using small grid numbers predicts the channel flow with higher accuracy in comparison with the other eddy viscosity models in the logarithmic layer. The elliptic-relaxation type models, $k-{\epsilon}-v2$, and ERRSM have the advantage of application to complex geometries and show good prediction for near wall flows.

Effects of Reynolds Number on Flow and Heat/Mass Characteristics Inside the Wavy Duct (Reynolds 수에 따른 꺾어진 덕트에서 열/물질전달 특성 고찰)

  • 장인혁;황상동;조형희
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.10
    • /
    • pp.809-820
    • /
    • 2003
  • The present study investigates effects of flow velocity on the convective heat/mass transfer characteristics in wavy ducts of a primary surface heat exchanger application. Local heat/mass transfer coefficients on the wavy duct sidewall are determined by using a naphthalene sublimation technique. The flow visualization technique is used to understand the overall flow structures inside the duct. The aspect ratio and corrugation angle of the wavy duct is fixed at 7.3 and 145$^{\circ}$ respectively, and the Reynolds numbers, based on the duct hydraulic diameter, vary from 100 to 5,000. The results show that there exist complex secondary flows and transfer processes resulting in non-uniform distributions of the heat/mass transfer coefficients on the duct side walls. At low Re (Re<1000), relatively high heat/mass transfer regions like cell shape appear on both pressure and suction side wall due to the secondary vortex flows called Taylor-Gortler vortices perpendicular to the main flow direction. However, at high Re (Re>1000), these secondary flow cells disappear and boundary layer type flow characteristics are observed on pressure side wall and high heat/mass transfer region by the flow reattachment appears on the suction side wall. The average heat/mass transfer coefficients are higher than those of the smooth circular duct due to the secondary flows inside wavy duct. And also friction factors are about two times greater than those of the smooth circular duct.

A Numerical Study on the Heat Transfer Characteristics of the Multiple Slot Impinging Jet (다양한 노즐 수 변화에 따른 충돌 제트의 열전달 특성에 관한 수치적 연구)

  • Kim, Sang-Keun;Ha, Man-Yeong;Son, Chang-Min
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.11
    • /
    • pp.754-761
    • /
    • 2011
  • The present study numerically investigates two-dimensional flow and heat transfer in the multiple confined impinging slot jet. Numerical simulations are performed for the different Reynolds numbers(Re=100 and 200) in the range of nozzles from 1 to 9 and height ratios(H/D) from 2 to 5, where H/D is the ratio of the channel height to the slot width. The vector plots of velocity profile, stagnation and averaged Nusselt number distributions are presented in this paper. The dependency of thermal fields on the Reynolds number, nozzle number and height ratio can be clarified by observing the Nusselt number as heat transfer characteristic at the stagnation point and impingement surface. The Nusselt number at the stagnation point of the central slot shows unsteadiness at H/D=3 and Re=200. The value of Nusselt number at the stagnation point of the central slot decreases with higher Reynolds number and number of nozzle although overall area averaged Nusselt number increases. Hence careful selection of geometrical parameters and number of nozzle are necessary for optimization of the heat transfer performance of multiple slot impinging jet.

A Numerical Analysis of Flow and Beat Transfer Characteristics of a Two-Dimensional Multi-Impingement Jet(I) (이차원 다중젯트의 유동 및 열전달 특성의 수치적 해석(I) -돌출열원이 없는 경우의 유동특성-)

  • 장대철;이기명
    • Journal of Biosystems Engineering
    • /
    • v.20 no.1
    • /
    • pp.58-65
    • /
    • 1995
  • A numerical study for a two dimensional multi-jet with crossflow of the spent fluid has been carried out. Three different distributions of mass-flow rate at 5 jet exits were assumed to see their effects upon the flow characteristics, especially in the jet-flow region. For each distribution, various Reynolds numbers ranging from laminar to turbulent flows were considered. Calculations drew the following items as conclusion. 1) The development of the free jets issued from downstream jets was hindered by the crossflow formed due to jets. Consequently, the free jet was developed into the channel flow without any evident symptom of impingement jet flow characteristics 2) The crossflow induced the pressure gradient along the cross section of jet exits and the value of the pressure gradient increased as going downstream. The crossflow generated also the turbulent kinetic energy as it collied with the downstream jets. 3) The skin friction coefficient along the impingement plate was affected more by the distribution of mass flow rate at jet exits rather than by the Reynolds number. The skin friction coefficient was inversely proportional to the square root of the Reynolds number, regardless of flow regime when a fully developed flow was formed in the jet flow region. 4) The distribution of the skin friction coefficient along the impingement plate was found to be controlled by adjusting the distribution of mass flow rate at jet exits.

  • PDF

Wake dynamics of a 3D curved cylinder in oblique flows

  • Lee, Soonhyun;Paik, Kwang-Jun;Srinil, Narakorn
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.501-517
    • /
    • 2020
  • Three-dimensional numerical simulations were performed to study the effects of flow direction and flow velocity on the flow regime behind a curved pipe represented by a curved circular cylinder. The cylinder is based on a previous study and consists of a quarter segment of a ring and a horizontal part at the end of the ring. The cylinder was rotated in the computational domain to examine five incident flow angles of 0-180° with 45° intervals at Reynolds numbers of 100 and 500. The detailed wake topologies represented by λ2 criterion were captured using a Large Eddy Simulation (LES). The curved cylinder leads to different flow regimes along the span, which shows the three-dimensionality of the wake field. At a Reynolds number of 100, the shedding was suppressed after flow angle of 135°, and oblique flow was observed at 90°. At a Reynolds number of 500, vortex dislocation was detected at 90° and 135°. These observations are in good agreement with the three-dimensionality of the wake field that arose due to the curved shape.

PIV measurement of step cavity with driven flow (구동류를 갖는 계단 캐비티의 PIV계측)

  • 조대환;김진구;이영호
    • Journal of Ocean Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.113-119
    • /
    • 1998
  • An experimental study was carried out in a three-dimensional cubic cavity driven by 2-dimensional plane Poiseuille flow for three kinds of Reynolds number, $10^4$, 3 $\times$ $10^4$ and 5 $\times$ $10^4$ based on the cavity width and cavity inlet mean flow velcoity. Instant simultaneous velocity vectors at whole field were measured by 2-D PIV system. Laser based illumination and two-frame grey-level cross correlation algorithm are adopted. Severe unsteady flow fluctuation within the cavity are remarkable at above Re = 3 $\times$ $10^4$ Reynolds numbers and sheared mixing layer phenomena are also found at the region where inlet driving Poiseuille flow is collided with the clock-wise rotating main primary vortex at upper center area. Instant velocity profiles reveal that deformed forced vortex formation is observed throughout the separate two areas.

  • PDF

ANALYSIS OF HEAT TRANSFER OF INCLINED IMPINGING JETS ON A CONCAVE SURFACE (엇갈리게 기울어진 충돌제트들에 의한 오목면 상의 열전달 성능해석)

  • Heo, M.W.;Lee, K.D.;Kim, K.Y.
    • Journal of computational fluids engineering
    • /
    • v.16 no.2
    • /
    • pp.11-16
    • /
    • 2011
  • Numerical analyses have been carried out to analyze the three-dimensional turbulent heat transfer by impingement jet on a concave surface with variation of geometric configurations. Three-dimensional Reynolds averaged Navier-stokes equations have been calculated using the shear stress transport turbulent model. The numerical results for heat transfer rate were validated in comparison with the experimental data. The distance between jet nozzles and angle of inclined jet nozzle were selected as the geometric variables. Area-averaged Nusselt numbers on concave surface are evaluated to find the characteristics of heat transfer with the two geometric variables. The heat transfer increases as the distance between jet nozzles increases, and the inclined impinging jets show much better heat transfer performance than the vertical impinging jet.

NUMERICAL STUDY OF NANOFLUIDS FORCED CONVECTION IN CIRCULAR TUBES (원형관내 나노유체의 강제대류에 관한 수치적 연구)

  • Choi, Hoon Ki;Yoo, Geun Jong
    • Journal of computational fluids engineering
    • /
    • v.19 no.3
    • /
    • pp.37-43
    • /
    • 2014
  • In this paper, hydraulic & thermal developing and fully developed laminar forced convection flow of a water-$Al_2O_3$ nanofluid in a circular horizontal tube with uniform heat flux at the wall, are investigated numerically. A single phase model employed with temperature independent properties. The thermal entrance length is presented in this paper. The variations of the convective heat transfer coefficient and shear stress are shown in the entrance region and fully developed region along different nanoparticles concentration and Reynolds numbers. Convective heat transfer coefficient for nanofluids is larger than that of the base fluid. It is shown that heat transfer is enhanced and shear stress is increased as the particle volume concentration increases. The heat transfer improves, as Reynolds number increases.

COMPUTATION OF TRANSITION FLOW WITH LAMINAR SEPARATION BUBBLE OVER AN AIRFOIL (익형의 층류박리를 동반한 천이 유동 해석)

  • Jeon, S.E.;Park, S.H.;Kim, S.H.;Byun, Y.H.;Lee, J.W.;Jung, K.J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.60-64
    • /
    • 2009
  • Laminar separation bubble and transitional flow over an airfoil are investigated at a moderate range of Reynolds numbers. In this research, a Reynolds-Averaged Navier-Stokes code is coupled with an empirical transition model that can predict transition onset points and the length of transition region. Without solving the boundary layer equations, approximated e-N method is directly applied to the RANS code and iteratively solved together. The computational results are compared with the experimental data for NACA0012 airfoil. Results of transition onset point and length are compared well with experimental and XFOIL prediction. In high angle of attack the present RANS results show better agreement than XFOIL results using the boundary layer equations.

  • PDF

NUMERICAL ANALYSIS FOR 2-D FREE JET FLOW BY SMAC SCHEME (SMAC법에 의한 2차원 자유분류의 수치해석)

  • Jung, S.H.;An, Y.J.;Shin, B.R.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.298-302
    • /
    • 2009
  • Numerical analysis of two dimensional incompressible laminar free jet flow was carried out by using finite difference SMAC scheme. Flow characteristics of free jet flow such as jet width, similarity of jet velocity and hypothetical origin were investigated for different Reynolds numbers of Re=30 and 100. The reliability of predictions were confirmed by comparison with exact solution. Non-dimensional velocity distribution showed similarity of jet flow velocity after initial region. In the region of laminar flow, the location of hypothetical origin becomes more distant with Reynolds number.

  • PDF