• Title/Summary/Keyword: Reynolds' Equation

Search Result 661, Processing Time 0.029 seconds

A Study on Flow Characteristics of Two-Dimensional Backward-Facing Step by CFD (CFD에 의한 2차원 후향계단에서의 재부착 유동특성에 관한 연구)

  • Choi Y. D.;Lee Y. H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1998.11a
    • /
    • pp.127-132
    • /
    • 1998
  • The present study is aimed to investigate flow characteristics of Two dimensional backward-facing step by numerical approach. A convection conservative difference scheme based upon SOLA algorithm is used for the solution of the two-dimensional incompressible Navier-Stokes equations to simulate the laminar, transitional and turbulent flow conditions at which the experimental data can be available for the backward-facing step. The twenty kinds of Reynolds number are used for the calculations. In an effort to demonstrate that the reported solutions are dependent on the mesh refinement, computations are performed on seven different meshes of uniformly increasing refinement. Also to investigate the result of inflow dependence, two kinds of the inflow profile are chosen for the laminar flow. As criterion of benchmarking the result of numerical simulation, reattachment length is used for the selected Reynolds numbers.

  • PDF

A Low-Reynolds-Number 4-Equation Model for Turbulent Separated and Reattaching Flows (난류박리 및 재부착 유동의 해석을 위한 저레이놀즈수 4-방정식 난류모형의 개발)

  • 이광훈;성형진
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.8
    • /
    • pp.2039-2050
    • /
    • 1995
  • The nonlinear low-Reynolds-number k..epsilon. model of park and Sung is extended to predict the turbulent heat transports in separated and reattaching flows. The equations of the temperature variance( $k_{\theta}$ and its dissipation rate(.epsilon.$_{\theta}$ are solved, in concert with the equations of the turbulent kinetic energy(k) and its dissiation rate(.epsilon). In the present model, the near-wall effect and the non-equilibrium effect are fully taken into consideration. The validation of the model is then applied to the turbulent flow behind a backward-facing step and the flow over a blunt body. The predicted results of the present model are compared and evaluated with the relevant experiments.

A Study on the Flow Characteristics of Cubic Cavity with driven Flow (구동류를 갖는 입방형 캐비티의 유동특성에 관한 연구)

  • 최민선
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.22 no.6
    • /
    • pp.935-941
    • /
    • 1998
  • Experiments were carried out for a cubic cavity flow. Contrinuous shear stress is supplied by driven flow for high Reynolds number and three kinds of aspect ratios. Velocity vectors are obtained by PIV and they are used as velocity components for Poisson equation for pressure, Related boundary conditions and no-slip condition at solid wall and the linear velocity extrapolation on the upper side of cavity are well examined for the present study. For calculation of pressure resolution of grid is basically $40{\times}40$ and 2-dimensional uniform mesh using MSC staggered grid is adopted. The flow field within the cavity maintains a forced-vortex formation and almost of the shear stress from the driving inflow is transformed into rotating flow energy and the size of the distorted forced-vortex increases with increment of Reynolds number

  • PDF

Aerodynamic Characteristics of Catwalk Structures (캣워크 구조물의 공기역학적 특성)

  • Lee, Seung-Ho;Lee, Han-Kyu;Kwon, Soon-Duck;Kim, Jong-Hwa
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.04a
    • /
    • pp.105-110
    • /
    • 2011
  • Catwalk structures are temporary walk ways for erection of main cables in suspension bridge. The aerodynamic characteristics of the catwalk structures are not well studied even though the catwalk structures are sensitive to wind action because of its flexibility. Present study demonstrates technical results obtained from wind tunnel tests of various catwalk structures. To obtain the aerostatic force coefficients of the floor system of catwalk, 1/14 and 1/4 scaled partial rigid models were fabricated and tested at the wind tunnel. In order to investigate the Reynolds number effects, the aerostatic force coefficients were measured at various wind velocities ranged from 5m/s to 30m/s. The test results revealed that the Reynolds number effects on aerostatic coefficients were not significant for the catwalk floor systems. An empirical equation for aerostatic force coefficients of catwalk are proposed based on the measured results.

  • PDF

Numerical investigation of Turbulent Flow in $270^{\circ}$ Bend using DES approaches (DES 모형을 이용한 270도 곡관 내 난류유동에 관한 수치해석)

  • Seo, Jeong-Sik;Shin, Jong-Keun;Hong, Seong-Ho;Choi, Young-Don
    • Proceedings of the SAREK Conference
    • /
    • 2007.11a
    • /
    • pp.558-563
    • /
    • 2007
  • Detached Eddy Simulation(DES) is performed for turbulent flow of the $270^{\circ}$ bend at a Reynolds number of 56,690. A Fine grid generation is used near a wall in order to satisfy the wall boundary condition of y+<1. Turbulence models adopted for DES and Reynolds Average Navier Stokes(RANS) simulation are SST(Shear Stress Transfort) model. Solutions for both streamwise and circumferential velocity components are compared with the experimental data by Lee for $270^{\circ}$ bend and by Chang for $180^{\circ}$ bend.

  • PDF

Numerical Investigation on Flow Pattern over Backward-Facing Step for Various Step Angles and Reynolds numbers

  • Lee, Jeong Hu;Nguyen, Van Thinh
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.60-60
    • /
    • 2021
  • Investigating Backward-Facing Step(BFS) flow is important in that it is a representative case for separation flows in various engineering flow systems. There have been a wide range of experimental, theoretical, and numerical studies to investigate the flow characteristics over BFS, such as flow separation, reattachment length and recirculation zone. However, most of such previous studies were concentrated only on the perpendicular step angle. In this study, several numerical investigations on the flow pattern over BFS with various step angles (10° ~ 90°) and expansion ratios (1.48, 2 and 3.27) under different Reynolds numbers (5000 ~ 64000) were carried out, mainly focused on the reattachment length. The numerical simulations were performed using an open source 3D CFD software, OpenFOAM, in which the velocity profiles and turbulence intensities are calculated by RANS (Reynolds Averaged Navier-Stokes equation) and 3D LES (Large Eddy Simulation) turbulence models. Overall, it shows a good agreement between simulations and the experimental data by Ruck and Makiola (1993). In comparison with the results obtained from RANS and 3D LES, it was shown that 3D LES model can capture much better and more details on the velocity profiles, turbulence intensities, and reattachment length behind the step for relatively low Reynolds number(Re < 11000) cases. However, the simulation results by both of RANS and 3D LES showed very good agreement with the experimental data for the high Reynolds number cases(Re > 11000). For Re > 11000, the reattachment length is no longer dependent on the Reynolds number, and it tends to be nearly constant for the step angles larger than 30°.) Based on the calibrated and validated numerical simulations, several additional numerical simulations were also conducted with higher Reynolds number and another expansion ratio which were not considered in the experiments by Ruck and Makiola (1993).

  • PDF

Stabilized finite element technique and its application for turbulent flow with high Reynolds number

  • Huang, Cheng;Yan, Bao;Zhou, Dai;Xu, Jinquan
    • Wind and Structures
    • /
    • v.14 no.5
    • /
    • pp.465-480
    • /
    • 2011
  • In this paper, a stabilized large eddy simulation technique is developed to predict turbulent flow with high Reynolds number. Streamline Upwind Petrov-Galerkin (SUPG) stabilized method and three-step technique are both implemented for the finite element formulation of Smagorinsky sub-grid scale (SGS) model. Temporal discretization is performed using three-step technique with viscous term treated implicitly. And the pressure is computed from Poisson equation derived from the incompressible condition. Then two numerical examples of turbulent flow with high Reynolds number are discussed. One is lid driven flow at Re = $10^5$ in a triangular cavity, the other is turbulent flow past a square cylinder at Re = 22000. Results show that the present technique can effectively suppress the instabilities of turbulent flow caused by traditional FEM and well predict the unsteady flow even with coarse mesh.

A Numerical Study on the Effect of PCB Structure Variation on the Electronic Equipment Cooling (PCB 구조변화가 전자장비 냉각에 미치는 영향에 관한 수치적 연구)

  • ;;Park, Kyoung-Woo
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.12
    • /
    • pp.3329-3343
    • /
    • 1995
  • The interaction of mixed convection and surface radiation in a printed circuit board(PCB) is investigated numerically. The electronic equipment is modeled by a two-dimensional channel with three hot blocks. In order to calculate the turbulent flow characteristics, the low Reynolds number k-.epsilon. model which is proposed by Launder and Sharma is applied. The S-4 approximation is used to solve the radiative transfer equation. The effects of the Reynolds number and geometric configuration variation of PCB on the flow and heat transfer characteristics are analyzed. As the results of this study, it is found that the thermal boundary layer occured at adiabatic wall in case with thermal radiation included, and the effect of radiation is also found to be insignificant for high Reynolds numbers. It is found, as well, that the heat transfer increases as the Reynolds number and block space increase and the channel height decreases and the heat transfer of vertical channel is greater than that of horizontal channel.

Finite Element Analysis of a Coupled Hydrodynamic Journal and Thrust Bearing in a Computer Hard Disk Drive (컴퓨터 하드디스크 드라이브에 사용되는 저널과 스러스트가 연성된 유체 동압 베어링의 유한 요소 해석)

  • Kim, Hakwoon;Lee, Sanghoon;Jang, Gunhee
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.1 s.94
    • /
    • pp.87-95
    • /
    • 2005
  • This paper proposes a method to calculate the characteristics of a coupled hydrodynamic journal and thrust bearing of a HDD spindle motor. The governing equations for the journal and thrust bearings are the two dimensional Reynolds equations in $\theta z$ and $ r\theta$ planes, respectively. Finite element method is appropriately applied to analyze the coupled journal and thrust bearing by satisfying the continuity of mass and pressure at the interface between the journal and thrust bearings. The pressure in a coupled bearing is calculated by applying the Reynolds boundary condition and compared with that by using the Half-Sommerfeld boundary condition. The static characteristics are obtained by integrating the pressure along the fluid film. The flying height of spindle motor is measured to verify the proposed analytical result. This research shows that the proposed method can describe HDB in a HDD system more accurately and realistically than the separate analysis of a journal or thrust bearing.

Second-Moment Closure Modelling of Particle-Laden Homogeneous Turbulent Shear Flows (고체입자가 부상된 균질 난류 전단유동의 2차-모멘트 모형화)

  • Shin, Jong-Keun;Seo, Jeong-Sik;Han, Seong-Ho;Choi, Young-Don
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.1 s.256
    • /
    • pp.29-39
    • /
    • 2007
  • A second-moment closure is applied to the prediction of a homogeneous turbulent shear flow laden with mono-size particles. The closure is curried out based on a 'two-fluid' methodology in which both carrier and dispersed phases are considered in the Eulerian frame. To reduce the number of coupled differential equations to be solved, Reynolds stress transport equations and algebraic stress models are judiciously combined to obtain the Reynolds stress of carrier and dispersed phases in the mean momentum equation. That is, the Reynolds stress components for carrier and dispersed phases are solved by modelled transport equations, but the fluid-particle velocity covariance tensors are treated by the algebraic models. The present predictions for all the components of Reynolds stresses are compared to the DNS data. Reasonable agreements are observed in all the components, and the effects of the coupling of carrier and dispersed phases are properly captured in every aspects.