• Title/Summary/Keyword: Reversible diffusion-influenced reaction

Search Result 6, Processing Time 0.018 seconds

Direct Calculation Method for Excited-state Diffusion-influenced Reversible Reactions with an External Field

  • Reigh, Shang Yik;Kim, Hyo-Joon
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.3
    • /
    • pp.1015-1019
    • /
    • 2012
  • The direct calculation method is generalized to the excited-state diffusion-influenced reversible reaction of a neutral and a charged particle under an external field with two different lifetimes and quenching in three dimensions. The present method provides an alternative way to calculate the binding probability density functions and the survival probabilities from the corresponding irreversible results. The solutions are obtained as the series solutions by the diagonal approximation due to the anisotropy of the unidirectional external field. The numerical results are found to be in good agreement with those of the previous study [S. Y. Reigh et al. J. Chem. Phys. 132, 164112 (2010)] within a weak field limit. The solutions of two approaches show qualitatively the same overall behavior including the power laws at long times.

Verification of Kinetic Theoretical Prediction of Diffusion-influenced Reversible

  • Yang, Min O;Sin, Guk Jae
    • Bulletin of the Korean Chemical Society
    • /
    • v.21 no.1
    • /
    • pp.93-96
    • /
    • 2000
  • A diffusion-influenced pseudo-first order reversible reaction A + B ⇔C + B is investigated by the molecular dynamics (MD) simulation method. Theoretical finding that the temporal evolution of reactants [conditional probabilities] in the reversible system can be expressed by the irreversible survival probability with an effective rate parameter is confirmed even in the presence of solvent particles. We carry out molecular dynamics simulations for both the irreversible and the reversible cases to evaluate the survival and the conditional probabilities for each cases. When the resultant irreversible survival probability is inserted into the proposed relation, the conditional probabilities given by the simulation are exactly reproduced.

Comparison of Alternate Approaches for Reversible Geminate Recombination

  • Khokhlova, Svetlana S.;Agmon, Noam
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.3
    • /
    • pp.1020-1028
    • /
    • 2012
  • This work compares various models for geminate reversible diffusion influenced reactions. The commonly utilized contact reactivity model (an extension of the Collins-Kimball radiation boundary condition) is augmented here by a volume reactivity model, which extends the celebrated Feynman-Kac equation for irreversible depletion within a reaction sphere. We obtain the exact analytic solution in Laplace space for an initially bound pair, which can dissociate, diffuse or undergo "sticky" recombination. We show that the same expression for the binding probability holds also for "mixed" reaction products. Two different derivations are pursued, yielding seemingly different expressions, which nevertheless coincide numerically. These binding probabilities and their Laplace transforms are compared graphically with those from the contact reactivity model and a previously suggested coarse grained approximation. Mathematically, all these Laplace transforms conform to a single generic equation, in which different reactionless Green's functions, g(s), are incorporated. In most of parameter space the sensitivity to g(s) is not large, so that the binding probabilities for the volume and contact reactivity models are rather similar.

Reversible Excited-State Proton Transfer: Effect of the Switching of Interaction Potential by Reaction

  • Lee, Jin-uk;Uhm, Je-sik;Lee, Woo-Jin;Lee, Sang-youb;Sung, Jae-young
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.2
    • /
    • pp.197-202
    • /
    • 2006
  • In the reaction A + B $^\rightarrow_\leftarrow$ C, where A and B are ionic reactants having opposite charges, a B molecule approaching an A will experience a switching of the interaction potential when the A molecule is captured by one of the other B molecules in the medium. In the reversible case, the former B molecule still has a chance to react with the A, so that one needs to take into account the switched interaction between the reactant B and the product C as well as that between the reactants to treat the kinetics accurately. It is shown that this kind of interaction potential switching affects the relaxation kinetics in an intriguing way as observed in a recent experiment on an excited-state proton transfer reaction.

Role of Diffusion in the Kinetics of Reversible Enzyme-catalyzed Reactions

  • Szabo, Attila;Zhou, Huan-Xiang
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.3
    • /
    • pp.925-928
    • /
    • 2012
  • The accurate expression for the steady-state velocity of an irreversible enzyme-catalyzed reaction obtained by Shin and co-workers (J. Chem. Phys. 2001, 115, 1455) is generalized to allow for the rebinding of the product. The amplitude of the power-law ($t^{-1/2}$) relaxation of the free- and bound-enzyme concentrations to steady-state values is expressed in terms of the steady-state velocity and the intrinsic (chemical) rate constants. This result is conjectured to be exact, even though our expression for the steady-state velocity in terms of microscopic parameters is only approximate.

Nonequilibrium Distribution Function Theory of Many-Particle Effects in the Reversible Reactions of the Type A+B ↔ C+B

  • Lee, Jin-Uk;Uhm, Je-Sik;Lee, Woo-Jin;Lee, Sang-Youb;Sung, Jae-Young
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.12
    • /
    • pp.1986-1990
    • /
    • 2005
  • We study the relaxation kinetics of reversible reactions of the type A + B $^\leftarrow_\rightarrow$ C + B by applying the manyparticle kernel theory, which we have developed to investigate many particle effects on general diffusioninfluenced reactions. It is shown that for the target model, where A and C molecules are immobile and their interconversion is induced by the encounter with the B molecules that are present in much excess, the manyparticle kernel theory gives a result that coincides with the known exact result.