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A diffusion-influenced pseudo-first order reversible reaction A + B《tC + B is investigated by the molecular 
dynamics (MD) simulation method. Theoretical finding that the temporal evolution of reactants [conditional 
probabilities] in the reversible system can be expressed by the irreversible survival probability with an effective 
rate parameter is confirmed even in the presence of solvent particles. We carry out molecular dynamics simu
lations for both the irreversible and the reversible cases to evaluate the survival and the conditional probabilities 
for each cases. When the resultant irreversible survival probability is inserted into the proposed relation, the 
conditional probabilities given by the simulation are exactly reproduced.

Introduction

Recently, a particular type of diffusion-influenced revers
ible reaction A + B t C + B has been studied by Gopich, 
Kipriyanov, and Doktorov (GKD11 and GKD22) and by 
Yang, Lee, and Shin (YLS).3 In GKD1, the many-particle 
kinetics in the above reaction was shown to be reduced to a 
single particle kinetics under certain conditions. Also they 
found a relation between the reversible and the irreversible 
descriptions for this reaction system, effectively reducing the 
former problem to the latter for which exactly solvable mod
els are available. A modified encounter theory of the par
tially non-Markovian nature was applied in GKD2 to 
investigate the pseudo-first-order reversible system, in 
which [A] or [C] << [B], and the results were compared with 
those of the renormalized kinetic theory of YLS. The same 
relation between the reversible and irreversible systems 
obtained by GKD1 was also presented by YLS for the 
pseudo-first-order system in their kinetic theoretical formu
lation which incorporates the many-body dynamical correla
tion effects.

In this work, we carry out the molecular dynamics (MD) 
simulation for both the pseudo-first-order reversible and 
irreversible reaction systems and verify the proposed rela
tion between them even in the presence of solvent particles 
whose influence have not been considered before.

Theoretical Background

Theoretically interesting quantities in the reversible reac
tion kinetics are conditional probabilities SA(t | A) and 
SA(t | C) that a reactant be found in A species at time t if it 
was A or C species at time zero, respectively. First, we dis
cuss a simple probabilistic relation between those.4 When 
the concentrations of A and C at time zero are [A]o and [C]。, 
the concentration of A at time t can be written in terms of the 
conditional probabilities as follows:
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[A(t)] = &(t | A)[A]o + &(t | C)[C]0. (1)

If [A]。= [A]eq and [C]o = [C]eq, where the subscript eq 
denotes the equilibrium value, then [A(t)] must be \A]eq for 
all t and Eq. (1) becomes

\A]eq = &(t | A)\A]eq + &(t | C)\C]eq. (2)

Dividing Eq. (2) by \A]eq, we obtain the generalized mass 
action law (GMA) as follows:

1 = SA(t | A) + KeqSA(t | C), (3)

where Keq = 耳?/崎어 = [C]eq /[A]eq is the equilibrium 
constant. Rearranging Eq. (1) by use of Eq. (3) and introduc
ing the concentration deviation g(t) = (A(t)]-[A]eq)/(A]o- 
\A]eq), we get the relation

“ Sa( 11A)顷 t) = SA (t|A)-Sa (t|C) = 1 - -씅으 (4)

where S：三[1 + K°q]-1. This was also derived from our 
kinetic theory.3

It was also found from the kinetic theory that the condi
tional probabilities can be predicted via the relation3

Sa (t|A)
—~W厂=1+ KeqS】rr, efft),

SA

SA( t| C) = S
—S-eq 1 -drr, eff (人

(5a)

(5b)

where §•“, ef t) is the effective irreversible survival proba
bility of A. The expression of Sg ef t) can be obtained 
within the framework of the kinetic theory, if the bimolecu- 
lar reaction undergoes irreversibly with the effective equilib
rium rate constant kf (三 kf + k：어), where kf and k：어 are 
the equilibrium forward and reverse rate constants, respec
tively. In fact, Eq. (5b) can be directly obtained from Eq. 
(5a) by use of the GMA given by Eq. (3). These relations tell 
us that the reversible reaction kinetics could be predicted 
once one knows the information of the irreversible reaction 
dynamics. In other words, the reverse reaction can not 
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change the reaction dynamics itself (including the pair 
dynamics and the many-body competitive reaction for a 
reactant) but merely introduces an alternative probabilistic 
argument reflecting the various initial conditions induced by 
the reverse reaction. When K°q — 8, the relations given in 
Eqs. (5) yield the survival probability of the irreversible 
reaction as it should be. We can see that these equations sat
isfy the GMA given by Eq. (3). Inserting Eq. (5b) into Eq. 
(4), one gets

g(t) = Sirrejff). (6)

Despite the complication associated with the different 
molecular histories embedded in the reversible reaction, it is 
very interesting that there still exist such simple relations.

All physical effects (potential of mean force, non-diffusive 
motion, many-body competitive reaction, etc.) on the revers
ible reaction kinetics are included in the expression of the 
survival probability of irreversible reaction for the system. 
Any tractable theory introduces some approximations 
regarding the reactant dynamics in liquid and thus the 
expressions of the irreversible survival probability can not 
be exact for a real system. Therefore, we do not expect Eq. 
(6) with the irreversible survival probability exactly pro
duces the concentration deviation (or conditional probabili
ties) of a real system or an MD simulation. However, the 
purpose of this paper is to test whether the general relations, 
Eqs. (5) and (6), are exact in the description of the many
body effects associated with various initial conditions at dif
ferent times induced by the reverse reactions. These should 
be reflected in the expression of concentration deviation 
(conditional probabilities). One of the available tests may be 
to perform a model computer simulation for a system for 
which the exact irreversible survival probability is known 
and to compare the result with Eqs. (5) and (6). A more gen
eral test would be to perform MD simulations for both irre
versible and reversible reactions and to confirm the 
exactness of those relations by comparing the irreversible 
survival probability and the concentration deviation of the 
reversible reaction obtained by the simulation. In this paper 
we choose the latter test.

MD Simulation

Molecular dynamics simulations have been carried out for 
diffusion-influenced irreversible bimolecular and fluores
cence quenching reactions.5,6 We extend a similar MD simu
lation method to the pseudo-first-order reversible reaction of 
type A + B o C + B in this work. Since the main features of 
diffusion-influenced reactions can be quite well character
ized by the hard sphere model, we also choose this model for 
the description of reactant and solvent molecules in liquid. A 
canonical ensemble of N (=512) identical hard spheres in a 
cubic cell with the reduced volume 1 is chosen for our MD 
simulations. The value of the reduced diameter b of a hard 
sphere is taken to be b = 0.114 to get the number density 
value of Nb3 = 0.76 which corresponds to a normal liquid 
density.

Initial configuration was randomly chosen avoiding the 
overlapping among the hard spheres and the initial velocities 
are chosen from the Maxwell-Boltzmann distribution. The 
starting configuration of the system is brought to an equilib
rium state by running the MD. The equations of motion for 
the hard spheres must be solved in a way which is qualita
tively different from the MD for a continuous potential. The 
standard method for this is well known.7 The ordinary peri
odic boundary condition in the x-, y-, and z-directions and 
the minimum image convention are used. After the equili
bration, we run the MD and generate trajectories of all parti
cles, which are stored at every collision time for further 
analyses up to the total collision number of 200,000. From 
stored configurations of all particles, we analyze the reaction 
events. For the pseudo-first-order case, every A or C reactant 
is assumed to be independent of each other. Then we con
sider only one tagged reactant of these species in the simula
tion cell.

We first consider the irreversible reaction case. The quan
tity to be obtained from the simulation is the irreversible sur
vival probability Sirr(t) that a reactant survives as A species 
when that molecule was initially A species surrounded by an 
equilibrium distribution of B's. To prepare the ensemble 
composed of the microscopic states associated with this 
macroscopic initial state, we choose the first configuration 
stored from the trajectory calculation. For that configuration, 
among N particles, we randomly select one and tag the spe
cies label A on it. Among the remaining N-1 particles, Nb 
particles were selected randomly and labeled as B. The rest 
of the N-1-NB molecules make up the solvent. By this label
ing of solute molecules to that configuration, we get one of 
the microscopic reaction states. To save the CPU time for the 
trajectory calculation, we prepare other 39 initial reaction 
states from that configuration varying the random selection 
of the B's to construct the independent 40 ensembles for the 
selected A molecule. Again, these random selection of the 40 
configurations of B's are repeated for other 39 random selec
tions of an A molecule. Then we get the independent 1,600 
microscopic reaction states from a species-irrelevant config
uration. With the time interval of 5 collisions in the trajec
tory calculation, we choose 100 species-irrelevant configu
rations and repeat the above procedure for every configura
tion to obtain the total NA0 (=160,000) microscopic initial 
reaction states. Since only one A molecule exists in a given 
microscopic initial reaction state, NA0 can be thought to be 
the number of A's, which are independent of each other, in 
the macroscopic initial equilibrium state.

For every microscopic initial reaction state, we check the 
reaction events along the trajectory of the initial species- 
irrelevant configuration. When the colliding molecules are 
labeled to be A and B species in the ith microscopic initial 
reaction state, they react with the probability wf. If a real 
value less than Wf is generated by a random number genera
tor, the reaction occurs and the survival time is stored as Ti 

for further analysis of the survival probability. This state is 
excluded in the reaction-checking subroutine for the subse
quent time evolution of the trajectory. Here, the time elapsed 
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between the creation of the molecule A and its disappearance 
upon reaction is called the survival time of the A molecule. If 
there is no reaction until the end of the trajectory, we set the 
survival time of that initial state to be infinity. After finishing 
the check of reaction events, the number of unreacted mole
cules of A in the ensemble at time t is evaluated by5

nA
Na(t)三 £。(们-1), (7)

i = 1

where 6(t) is the step function. With this quantity, the sur
vival probability of the irreversible reaction can be obtained, 
in practice for a finite number of initial states, as

勺(WNa (t)
Sirr (t)-------—• (8)

Na

Now we consider the reversible reaction. In this case, we 
obtain the conditional probability SA (11C) that a reactant be 
A species at time t if it was C species at time zero. In the sim
ulation, the procedure of the preparation of the microscopic 
initial reaction states is the same as that of the irreversible 
reaction case except that the species of the tagged molecule 
in every initial state is not A but C. Contrary to the irrevers
ible case, we should trace the trajectory by the end for all 
microscopic initial reaction states since the forward and the 
reverse reactions can occur consecutively. Along the trajec
tory evolution, we check the reaction event. When the col
liding molecular pair is A (or C) and B in the ith microscopic 
initial reaction state, they will react with the probability Wf 

(or Wr). If the reaction occurs, the time [elapsed between the 
preparation of the initial state and the reaction] and the spe
cies of the tagged molecule after the reaction are stored into 
TIME(i, j) and SPEC(i, j) where the indices i and j denote the 
ith ensemble and the jth reaction, respectively. These values 
of TIME and SPEC variables stored will be used in the fur
ther analysis for the conditional probability. This procedure 
is repeated until the end of the trajectory. At the end of the

Figure 1. Irreversible survival probability when Wf = 1 and the 
concentration deviation of reversible reaction with the values of (a) 
Wf = Wr = 0.5 (•••) and (b) Wf = 0.2 and Wr = 0.8 (xxx). The time is 
in the reduced unit of Jm/kBT.

trajectory, we set TIME(i, Ni + 1) = 00 and SPEC(i, Ni + 1) 
=SPEC(i, Ni - 1) where Ni denotes the number of reactions 
of the tagged molecule in the ith ensemble. To remove the 
outer boundary effect in time, the trajectory calculation 
should be carried out for a sufficiently long time.

After finishing the check of reaction events for all micro
scopic initial reaction states, we evaluate the number of A 
molecules in the ensemble at time t by the values of SPEC 
and TIME stored from the following relation:

n0 &
NA(t | C)三 ££ { 이t- TIME(i j)]

i = 1j = 1

.佻 TIME (i ,j +1)-1 ]} Spec(니),a . (9)

With this quantity, the conditional probability SA(t | C) can 
be obtained as

Results and Discussion

The relations given by Eqs. (5) and (6) are closely related 
to each other via the GMA and thus we confine our discus
sion in this paper to the conditional probability SA (11C). 
First, we perform the molecular dynamic simulation for the 
irreversible reaction system with the reaction probability 
Wf = 1 . We consider the number of B’s, Nb = 54 , which 
corresponds to the moderately high concentration of B spe
cies, 4no Nb = 1.0 . For convenience, the reaction distance 
(J is assumed to be equivalent to the reduced hard sphere 
diameter b. The time dependence of the irreversible survival 
probability Sirr(t; Wf = 1) is displayed by the solid line in 
Figure 1. The time is in the reduced unit, Jm/kBT 眼 is the 
Boltzmann constant, T the absolute temperature, and m 
molecular mass).

To verify the relation of Eq. (5b), we should perform the 
simulation for the reversible reaction system with the sum of 
the equilibrium rate constants kf + 辭 corresponding to the 
above irreversible simulation. In the present simulation, the 
intrinsic reactivities are characterized by the forward and 
reverse reaction probabilities, Wf and Wr. Then the equilib
rium rate constant kf (or 玲)will be the product of the 
reaction probability Wf (or Wr) and the equilibrium collision 
frequency. So, the equilibrium rate constant is linearly pro
portional to the reaction probability. We choose two sets of 
the reaction probabilities, (a) Wf = Wr = 0.5 and (b) Wf = 0.2 
and Wr = 0.8, which satisfy the condition Wf + Wr = 1 which 
corresponds to the above irreversible reaction simulation. 
The equilibrium constants Keq for these cases are (a) 1 and 
(b) 0.25 to give the equilibrium values of the conditional 
probability SA of (a) 0.5 and (b) 0.8, respectively. With 
these values, we plot the concentration deviation g = 1- 

Sa( | C)/S? in Figure 1 and compare those with the irre
versible survival probability obtained earlier. The coinci
dence between the reversible and the irreversible kinetics is 
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perfect for two sets of the reactivity of reversible reaction. 
From this comparison, we can conclude that the relations 
given by Eqs. (5) and (6) are essentially exact in the descrip
tion of the reverse reaction even in the presence of solvent 
particles.
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