• Title/Summary/Keyword: Reversible Watermarking

Search Result 59, Processing Time 0.025 seconds

A Domain-independent Dual-image based Robust Reversible Watermarking

  • Guo, Xuejing;Fang, Yixiang;Wang, Junxiang;Zeng, Wenchao;Zhao, Yi;Zhang, Tianzhu;Shi, Yun-Qing
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.12
    • /
    • pp.4024-4041
    • /
    • 2022
  • Robust reversible watermarking has attracted widespread attention in the field of information hiding in recent years. It should not only have robustness against attacks in transmission but also meet the reversibility of distortion-free transmission. According to our best knowledge, the most recent robust reversible watermarking methods adopt a single image as the carrier, which might lead to low efficiency in terms of carrier utilization. To address the issue, a novel dual-image robust reversible watermarking framework is proposed in this paper to effectively utilize the correlation between both carriers (namely dual images) and thus improve the efficiency of carrier utilization. In the dual-image robust reversible watermarking framework, a two-layer robust watermarking mechanism is designed to further improve the algorithm performances, i.e., embedding capacity and robustness. In addition, an optimization model is built to determine the parameters. Finally, the proposed framework is applied in different domains (namely domain-independent), i.e., Slantlet Transform and Singular Value Decomposition domain, and Zernike moments, respectively to demonstrate its effectiveness and generality. Experimental results demonstrate the superiority of the proposed dual-image robust reversible watermarking framework.

Reversible Watermarking Using Adaptive Edge-Guided Interpolation

  • Dai, Ningjie;Feng, Guorui;Zeng, Qian
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.4
    • /
    • pp.856-873
    • /
    • 2011
  • Reversible watermarking is an open problem in information hiding field, with embedding the encoded bit '1' or '0' into some sensitive images, such as the law enforcement, medical records and military images. The technique can retrieve the original image without distortion, after the embedded message has been extracted. Histogram-based scheme is a remarkable breakthrough in reversible watermarking schemes, in terms of high embedding capacity and low distortion. This scheme is lack of capacity control due to the requirement for embedding large-scale data, because the largest hidden capacity is decided by the amount of pixels with the peak point. In this paper, we propose a reversible watermarking scheme to enlarge the number of pixels with the peak point as large as possible. This algorithm is based on an adaptive edge-guided interpolation, furthermore, hides messages by interpolation-error, i.e. the difference between the original and interpolated image value. Simulation results compared with other state-of-the-art reversible watermarking schemes in this paper demonstrate the validity of the proposed algorithm.

Block-based Image Authentication Algorithm using Differential Histogram-based Reversible Watermarking (차이값 히스토그램 기반 가역 워터마킹을 이용한 블록 단위 영상 인증 알고리즘)

  • Yeo, Dong-Gyu;Lee, Hae-Yeoun
    • The KIPS Transactions:PartB
    • /
    • v.18B no.6
    • /
    • pp.355-364
    • /
    • 2011
  • In most applications requiring high-confidential images, reversible watermarking is an effective way to ensure the integrity of images. Many watermarking researches which have been adapted to authenticate contents cannot recover the original image after authentication. However, reversible watermarking inserts the watermark signal into digital contents in such a way that the original contents can be restored without any quality loss while preserving visual quality. To detect malicious tampering, this paper presents a new block-based image authentication algorithm using differential histogram-based reversible watermarking. To generate an authentication code, the DCT-based authentication feature from each image block is extracted and combined with user-specific code. Then, the authentication code is embedded into image itself with reversible watermarking. The image can be authenticated by comparing the extracted code and the newly generated code and restored into the original image. Through experiments using multiple images, we prove that the presented algorithm has achieved over 97% authentication rate with high visual quality and complete reversibility.

A High Capacity Reversible Watermarking Using Histogram Shifting (히스토그램 이동을 이용한 고용량 리버서블 워터마킹)

  • Bae, Sung-Ho
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.1
    • /
    • pp.76-82
    • /
    • 2010
  • Reversible watermarking hides some information in a digital image in such a way that an authorized party could decode the hidden information and also restore the image to its original state. In this paper, a high capacity reversible watermarking method using histogram shifting is proposed. In order to increase embedding capacity, the proposed method divides the image into $2{\times}2$ blocks and uses a paring(horizontal, vertical, diagonal) inside each block, then finds a maximum embedding bin which has the most frequent difference values among the parings. Also, the proposed method removes the overflow and underflow by using location map which including the maximum embedding bin and increases the embedding capacity by embedding iteratively. The experimental results show that the proposed method provides a high embedding capacity and good visual quality compared with the conventional reversible watermarking methods.

Robust and Reversible Image Watermarking Scheme Using Combined DCT-DWT-SVD Transforms

  • Bekkouch, Souad;Faraoun, Kamel Mohamed
    • Journal of Information Processing Systems
    • /
    • v.11 no.3
    • /
    • pp.406-420
    • /
    • 2015
  • We present a secure and robust image watermarking scheme that uses combined reversible DWT-DCT-SVD transformations to increase integrity, authentication, and confidentiality. The proposed scheme uses two different kinds of watermarking images: a reversible watermark, $W_1$, which is used for verification (ensuring integrity and authentication aspects); and a second one, $W_2$, which is defined by a logo image that provides confidentiality. Our proposed scheme is shown to be robust, while its performances are evaluated with respect to the peak signal-to-noise ratio (PSNR), signal-to-noise ratio (SNR), normalized cross-correlation (NCC), and running time. The robustness of the scheme is also evaluated against different attacks, including a compression attack and Salt & Pepper attack.

Interval-based Audio Integrity Authentication Algorithm using Reversible Watermarking (가역 워터마킹을 이용한 구간 단위 오디오 무결성 인증 알고리즘)

  • Yeo, Dong-Gyu;Lee, Hae-Yeoun
    • The KIPS Transactions:PartB
    • /
    • v.19B no.1
    • /
    • pp.9-18
    • /
    • 2012
  • Many audio watermarking researches which have been adapted to authenticate contents can not recover the original media after watermark removal. Therefore, reversible watermarking can be regarded as an effective method to ensure the integrity of audio data in the applications requiring high-confidential audio contents. Reversible watermarking inserts watermark into digital media in such a way that perceptual transparency is preserved, which enables the restoration of the original media from the watermarked one without any loss of media quality. This paper presents a new interval-based audio integrity authentication algorithm which can detect malicious tampering. To provide complete reversibility, we used differential histogram-based reversible watermarking. To authenticate audio in parts, not the entire audio at once, the proposed algorithm processes audio by dividing into intervals and the confirmation of the authentication is carried out in each interval. Through experiments using multiple kinds of test data, we prove that the presented algorithm provides over 99% authenticating rate, complete reversibility, and higher perceptual quality, while maintaining the induced-distortion low.

Reversible DNA Watermarking Technique Using Histogram Shifting for Bio-Security (바이오 정보보호 위한 히스토그램 쉬프팅 기반 가역성 DNA 워터마킹 기법)

  • Lee, Suk-Hwan;Kwon, Seong-Geun;Lee, Eung-Joo;Kwon, Ki-Ryong
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.2
    • /
    • pp.244-253
    • /
    • 2017
  • Reversible DNA watermarking is capable of continuous DNA storage and forgery prevention, and has the advantage of being able to analyze biological mutation processes by external watermarking by iterative process of concealment and restoration. In this paper, we propose a reversible DNA watermarking method based on histogram multiple shifting of noncoding DNA sequence that can prevent false start codon, maintain original sequence length, maintain high watermark capacity without biologic mutation. The proposed method transforms the non-coding region DNA sequence to the n-th code coefficients and embeds the multiple bits of the n-th code coefficients by the non-recursive histogram multiple shifting method. The multi-bit embedding process prevents the false start codon generation through comparison search between adjacent concealed nucleotide sequences. From the experimental results, it was confirmed that the proposed method has higher watermark capacity of 0.004-0.382 bpn than the conventional method and has higher watermark capacity than the additional data. Also, it was confirmed that false start codon was not generated unlike the conventional method.

Reversible Multipurpose Watermarking Algorithm Using ResNet and Perceptual Hashing

  • Mingfang Jiang;Hengfu Yang
    • Journal of Information Processing Systems
    • /
    • v.19 no.6
    • /
    • pp.756-766
    • /
    • 2023
  • To effectively track the illegal use of digital images and maintain the security of digital image communication on the Internet, this paper proposes a reversible multipurpose image watermarking algorithm based on a deep residual network (ResNet) and perceptual hashing (also called MWR). The algorithm first combines perceptual image hashing to generate a digital fingerprint that depends on the user's identity information and image characteristics. Then it embeds the removable visible watermark and digital fingerprint in two different regions of the orthogonal separation of the image. The embedding strength of the digital fingerprint is computed using ResNet. Because of the embedding of the removable visible watermark, the conflict between the copyright notice and the user's browsing is balanced. Moreover, image authentication and traitor tracking are realized through digital fingerprint insertion. The experiments show that the scheme has good visual transparency and watermark visibility. The use of chaotic mapping in the visible watermark insertion process enhances the security of the multipurpose watermark scheme, and unauthorized users without correct keys cannot effectively remove the visible watermark.

Reversible Watermarking with Adaptive Embedding Threshold Matrix

  • Gao, Guangyong;Shi, Yun-Qing;Sun, Xingming;Zhou, Caixue;Cui, Zongmin;Xu, Liya
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.9
    • /
    • pp.4603-4624
    • /
    • 2016
  • In this paper, a new reversible watermarking algorithm with adaptive embedding threshold matrix is proposed. Firstly, to avoid the overflow and underflow, two flexible thresholds, TL and TR, are applied to preprocess the image histogram with least histogram shift cost. Secondly, for achieving an optimal or near optimal tradeoff between the embedding capacity and imperceptibility, the embedding threshold matrix, composed of the embedding thresholds of all blocks, is determined adaptively by the combination between the composite chaos and the average energy of Integer Wavelet Transform (IWT) block. As a non-liner system with good randomness, the composite chaos is suitable to search the optimal embedding thresholds. Meanwhile, the average energy of IWT block is calculated to adjust the block embedding capacity, and more data are embedded into those IWT blocks with larger average energy. The experimental results demonstrate that compared with the state-of-the-art reversible watermarking schemes, the proposed scheme has better performance for the tradeoff between the embedding capacity and imperceptibility.

Adaptive reversible image watermarking algorithm based on DE

  • Zhang, Zhengwei;Wu, Lifa;Yan, Yunyang;Xiao, Shaozhang;Gao, Shangbing
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.3
    • /
    • pp.1761-1784
    • /
    • 2017
  • In order to improve the embedding rate of reversible watermarking algorithm for digital image and enhance the imperceptibility of the watermarked image, an adaptive reversible image watermarking algorithm based on DE is proposed. By analyzing the traditional DE algorithm and the generalized DE algorithm, an improved difference expansion algorithm is proposed. Through the analysis of image texture features, the improved algorithm is used for embedding and extracting the watermark. At the same time, in order to improve the embedding capacity and visual quality, the improved algorithm is optimized in this paper. Simulation results show that the proposed algorithm can not only achieve the blind extraction, but also significantly heighten the embedded capacity and non-perception. Moreover, compared with similar algorithms, it is easy to implement, and the quality of the watermarked images is high.