• 제목/요약/키워드: Reverse offset printing

검색결과 8건 처리시간 0.018초

Reverse Offset Printing용 고신축성 Blanket 재료 선정에 관한 연구 (A Study on the Selection of Highly Flexible Blanket for Reverse Offset Printing)

  • 신승항;김석;조영태
    • 한국기계가공학회지
    • /
    • 제20권5호
    • /
    • pp.121-127
    • /
    • 2021
  • Reverse offset printing is considering as an emerging technology for printed electronics owing to its environmentally friendliness and cost-effectiveness. In reverse offset printing, selecting the materials for cliché and blanket is critical because of its minimum resolution, registration errors, aspect ratio of reliefs, pattern area, and reusability. Various materials such as silicon, quartz, glass, electroplated nickel plates, and imprinted polymers on rigid substrates can be used for the reverse offset printing of cliché. However, when new structures are designed for specific applications, new clichés need to re-fabricated each time employing multiple time-consuming and costly processes. Therefore, by modifying the blanket materials containing the printing ink, several new structures can be easily created using the same cliché. In this study, we investigated various elastomeric materials and evaluated their applicability for designing a highly stretchable blanket with controlled elastic deformation to implement tunable reverse offset printing.

Reverse Offset에서 잉크 전이 유동에 관한 시뮬레이션 연구 (A Study on the Computer Simulation of Ink Flow in the Reverse Offset Printing)

  • 이언석;윤종태
    • 한국인쇄학회지
    • /
    • 제30권2호
    • /
    • pp.23-33
    • /
    • 2012
  • With the development of many display technologies currently applied to them in the field of printed electronics, there have been many researches that high resolution printing for thin and uniform pattern. In this paper, printing ink flow properties in the reverse offset mechanism were simulated. The aim of this research is to expect the ink flow behavior between cliches to make fine pattern by a printing technique which is a reverse offset. The simulation results show that almost the same as the experiments and the flow behavior according to the ink film thickness and printing pressure changes could be expected.

리버스 그라비아 옵셋 또는 그라비아 옵셋 프린팅을 이용한 조명용 OLED 소자 보조전극 형성 공정 연구 (A Study on Processing of Auxiliary Electrodes for OLED Lighting Devices Using a Reverse Gravure-Offset or Gravure-Offset Printing)

  • 배성우;곽선우;김인영;노용영
    • 한국정밀공학회지
    • /
    • 제30권6호
    • /
    • pp.578-583
    • /
    • 2013
  • The lighting devices using organic light emitting diodes (OLEDs) are actively researched because of the various advantages such as high power efficiency and 2-dimensitonal lighting emitting. To commercialize those OLED lighting devices, the manufacturing cost must be downed to comparable price with conventional light sources. Here, we demonstrate a reverse gravure-offset or gravure off-set printed metal electrode for the auxiliary electrode for OLED lighting devices. For the fabricated OLED's auxiliary electrode, we used Ag nano-paste and printed metal grid structure with a line width and spacing of several ten and hundred micrometer by using gravure-offset printing. In the end the printing metal grid pattern are successfully achieved by optimization of various experimental conditions such as printing pressure, printing speed and printing delay time.

PVP(polyvinylpyrrolidone)가 리버스 오프셋용 은 나노 잉크 물성에 미치는 영향 (Effect of PVP(polyvinylpyrrolidone) on the Ag Nano Ink Property for Reverse Offset Printing)

  • 한현숙;곽선우;김봉민;이택민;김상호;김인영
    • 한국재료학회지
    • /
    • 제22권9호
    • /
    • pp.476-481
    • /
    • 2012
  • Among the various roll-to-roll printing technologies such as gravure, gravure-offset, and reverse offset printing, reverse offset printing has the advantage of fine patterning, with less than 5 ${\mu}m$ line width. However, it involves complex processes, consisting of 1) the coating process, 2) the off process, 3) the patterning process, and 4) the set process of the ink. Each process demands various ink properties, including viscosity, surface tension, stickiness, and adhesion with substrate or clich$\acute{e}$; these properties are critical factors for the printing quality of fine patterning. In this study, Ag nano ink was developed for reverse offset printing and the effect of polyvinylpyrrolidone(PVP), used as a capping agent of Ag nano particles, on the printing quality was investigated. Ag nano particles with a diameter of ~60 nm were synthesized using the conventional polyol synthesis process. Ethanol and ethylene glycol monopropyl ether(EGPE) were used together as the main solvent in order to control the drying and absorption of the solvents during the printing process. The rheological behavior, especially ink adhesion and stickiness, was controlled with washing processes that have an effect on the offset process and that played a critical role in the fine patterning. The electrical and thermal behaviors were analyzed according to the content of PVP in the Ag ink. Finally, an Ag mesh pattern with a line width of 10 ${\mu}m$ was printed using reverse offset printing; this printing showed an electrical resistivity of 36 ${\mu}{\Omega}{\cdot}cm$ after sintering at $200^{\circ}C$.

리버스옵셋 프린팅을 이용한 디지털 사이니지 디스플레이용 TFT 전극 형성 공정 연구 (A Study on Processing of TFT Electrodes for Digital Signage Display using a Reverse Offset Printing)

  • 윤선홍;이준상;이승현;이범주;신진국
    • 한국정밀공학회지
    • /
    • 제31권6호
    • /
    • pp.497-504
    • /
    • 2014
  • The digital signage display is actively researched as the next generation of large FPD. To commercialize those digital signage display, the manufacturing cost must be downed with printing method instead of conventional photolithography. Here, we demonstrate a reverse offset printed TFT electrodes for the digital signage display. For the fabricated source/drain and gate electrode, we used Ag ink, silicone blanket, Clich$\acute{e}$ and reverse offset printer. We printed uniform TFT electrode patterns with narrow line width(10 ${\mu}m$ range) and thin thickness(nm range). In the end the printing source/drain and gate electrode are successfully achieved by optimization of experimental conditions such as Clich$\acute{e}$ surface treatment, ink coating process, delay time, off/set process and curing temperature. Also, we checked that the printing align accuracy was within 5 ${\mu}m$.

리버스 옵셋 인쇄에서 PDMS 블랑켓 변형이 인쇄에 미치는 영향에 관한 연구 (Effect of PDMS Blanket Deformation on Printability in Reverse-Offset Printing)

  • 최영만;김광영;조정대;이택민
    • 대한기계학회논문집B
    • /
    • 제38권8호
    • /
    • pp.709-714
    • /
    • 2014
  • 리버스 옵셋 인쇄는 인쇄전자를 위한 미세 패터닝기술 중 하나로서 수 ${\mu}m$ 이하의 선폭을 구현할 수 있다. 옵셋 인쇄의 특성상 잉크는 PDMS 재질의 블랑켓에 전사된 후 음각으로 패턴된 클리쉐에 접촉하여 불필요한 패턴을 제거하게 되는데, 이 때 블랑켓은 압력에 의하여 음각 패턴 내부로 침투하는 변형이 발생한다. 이러한 변형은 인쇄 압력에 비례하며, 과도한 인쇄 압력은 넓은 면적의 패턴을 인쇄할 때 클리쉐 패턴의 바닥에 블랑켓이 닿는 불량을 일으키게 된다. 이 논문에서는 리버스 옵셋 인쇄에서 가압변위에 따른 PDMS 블랑켓의 변형을 유한요소기법을 이용하여 모델링하고 접촉압력 대비 변형량을 예측함으로써 실제 인쇄 장비의 실험 결과와 비교하여 인쇄결함이 발생하지 않도록 하는 클리쉐의 제작조건을 제시하고자 한다.

Printed flexible OTFT backplane for electrophoretic displays

  • Ryu, Gi-Seong;Lee, Myung-Won;Song, Chung-Kun
    • Journal of Information Display
    • /
    • 제12권4호
    • /
    • pp.213-217
    • /
    • 2011
  • Printing technologies were applied to fabricate a flexible organic thin-film transistor (OTFT) backplane for electrophoretic displays (EPDs). Various printing processes were adopted to maximize the figures of each layer of OTFT: screen printing combined with reverse offset printing for the gate electrodes and scan bus lines with Ag ink, inkjet for the source/drain electrodes with glycerol-doped Poly (3,4-ethylenedioxythiophene): Poly (styrenesulfonate) (PEDOT:PSS), inkjet for the semiconductor layer with Triisopropylsilylethynyl (TIPS)-pentacene, and screen printing for the pixel electrodes with Ag paste. A mobility of $0.44cm^2/V$ s was obtained, with an average standard deviation of 20%, from the 36 OTFTs taken from different backplane locations, which indicates high uniformity. An EPD laminated on an OTFT backplane with $190{\times}152$ pixels on an 8-in panel was successfully operated by displaying some patterns.

스크린 인쇄와 리버스 오프셋 인쇄를 혼합한 대면적 미세 전극용 인쇄공정 (A Printing Process Combining Screen Printing with Reverse Off-set for a Fine Patterning of Electrodes on Large Area Substrate)

  • 박지은;송정근
    • 한국전기전자재료학회논문지
    • /
    • 제24권5호
    • /
    • pp.374-380
    • /
    • 2011
  • In this paper a printing process for patterning electrodes on large area substrate was developed by combining screen printing with reverse off-set printing. Ag ink was uniformly coated by screen printing. And then etching resist (ER) was patterned in the Ag film by reverse off-set printing, and then the non-desired Ag film was etched off by etchant. Finally, the ER was stripped-off to obtain the final Ag patterns. We extracted the suitable conditions of reverse Using the process we successfully fabricated gate electrodes and scan bus lines of OTFT-backplane used for e-paper, in which the diagonal size was 6 inch, the resolution $320{\times}240$, the minimum line width 30 um, and sheet resistance 1 ${\Omega}/{\Box}$.